Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover RNA repair system in bacteria

14.10.2009
In new papers appearing this month in Science and the Proceedings of the National Academy of Sciences, University of Illinois biochemistry professor Raven H. Huang and his colleagues describe the first RNA repair system to be discovered in bacteria. This is only the second RNA repair system discovered to date (with two proteins from T4 phage, a virus that attacks bacteria, as the first).

The novelty of the newly discovered bacterial RNA repair system is that, before the damaged RNA is sealed, a methyl group is added to the two-prime hydroxyl group at the cleavage site of the damaged RNA, making it impossible to cleave the site again. Thus, the repaired RNA is "better than new."

This discovery has implications for protecting cells against ribotoxins, a class of toxins that kills cells by cleaving essential RNAs involved in protein translation. Because the enzyme responsible for methylation in the newly-discovered RNA repair system is the Hen1 homolog in bacteria, the finding has also implications for the understanding of RNA interference and gene expression in plants, animals, and other eukaryotes. The eukaryotic Hen1 is one of three enzymes (along with Dicer and Argonaute) essential for the generation of small noncoding RNAs of 19-30 nucleotides in RNA interference.

While the Science paper describes the mechanism of the entire RNA repair process, the article in PNAS focuses on the chemistry of the methylation reaction, specifically the crystal structure of the methyltransferase domain of bacterial Hen1. Because the eukaryotic Hen1 carries out the same chemical reaction, the study should further understanding of RNA interference in eukaryotic organisms.

"Hen1 is one of three essential enzymes in generating small noncoding RNAs for RNA interference in eukaryotes," Huang said. "We found out that Hen1 homologs exist in bacteria, but bacteria have no RNA interference. Therefore, we were very curious to find out what bacterial Hen1 is used for."

"Our studies demonstrated that bacterial Hen1 carries out the same chemical reaction as its counterpart in eukaryotes, which was not surprising," he said. "What surprised us was that, instead of involvement in RNA interference, the bacterial Hen1 is part of a RNA repair and modification system. And Hen1 is responsible for producing the repaired RNA that is 'better than new.'"

William Gillespie | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>