Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Blood Proteins Associated with Early Development of Lung Cancer

14.09.2011
A research team led by Fred Hutchinson Cancer Research Center has discovered proteins in the blood that are associated with early lung cancer development in mice and humans. The advance brings the reality of a blood test for the early detection and diagnosis of lung cancer a step closer.

The findings, by a team led by Samir Hanash, M.D., Ph.D., head of the Hutchinson Center’s Molecular Diagnostics Program and member of its Public Health Sciences Division, are published online Sept. 12 ahead of the Sept. 13 print issue of Cancer Cell.

“A major feature of this study was that we were able to replicate findings from mouse models of lung cancer in blood samples from humans with lung cancer both at the time of diagnosis and, importantly, prior to the onset of symptoms and diagnosis,” Hanash said. “Our data showed that the protein markers that were tested showed similar concordance between lung cancer in the mouse and lung cancer in humans. This means that developing a blood test to detect lung cancer is increasingly within reach.”

The blood protein signatures discovered in the future may be used in a blood test to not only screen for lung cancer among high-risk individuals such as current and former smokers, but to aid in diagnosis, distinguishing between various subtypes of the disease, such as small-cell lung cancer and lung adenocarcinoma.

Hanash envisions that such a test could be used together with imaging technologies such as CT screening to monitor people at high risk of developing the disease.

“There is a substantial need for simple, non-invasive means to detect lung cancer. While imaging-based screening to detect lung cancer has shown promise, blood-based diagnostics provide a complementary means for detection, disease classification, and monitoring for cancer progression and regression,” the authors wrote.

For the study, the researchers conducted in-depth blood protein analysis of three mouse models of lung adenocarcinoma and a genetically engineered mouse model of small-cell lung cancer. To further refine the results, they compared these lung cancer protein profiles to those from other well-established mouse models of pancreatic, ovarian, colon, prostate and breast cancer, as well as two mouse models of inflammation without the presence of cancer. Several protein signatures emerged that were specific to lung cancer:
• In models of lung adenocarcinoma, the researchers uncovered a set of elevated proteins that are regulated by the NKX2.1 transcription factor, which has been linked to lung development and function. They also discovered a network of dysregulated proteins linked to epidermal growth factor receptor which, when mutated in lung tissue, is associated with cancer development. Levels of these proteins returned to near normal upon treatment with a tyrosine kinase inhibitor, an anti-cancer drug.

• In a model of small-cell lung cancer, the researchers found a distinct blood protein signature that was associated with neuroendocrine development.

To determine whether these protein signatures in mice were relevant to human lung cancer, the researchers analyzed blood samples from 28 smokers who had been newly diagnosed with operable lung cancer and blood samples from 26 other subjects that were obtained up to a year before lung cancer was diagnosed. For comparison purposes they also analyzed blood from a similar number of matched, cancer-free controls.

The researchers found striking similarities between the protein signatures in mice and human. For example, in mice with small-cell lung cancer, they found elevated levels of a neural protein called Robo1. They also found significantly increased levels of this protein in patients with small-cell lung cancer as compared to matched human controls.

“Additional validation studies are in progress to further determine the sensitivity and specificity of the marker panels,” Hanash said.

Collaborators on the study included researchers from Memorial Sloan-Kettering Cancer Center, the National Human Genome Research Institute, Yale University School of Medicine, Stanford University, the University of Texas Southwestern Medical Center, and Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Harvard Medical School.

Funding for the research came from the NCI Mouse Models of Human Cancer Program, the NCI Early Detection Research Network, the Canary Foundation, the Thomas G. Labrecque Foundation, the Uniting Against Lung Cancer Foundation, the Department of Defense Congressionally Directed Lung Cancer Research Program and the Parker B. Francis Fellowship Program of the Francis Family Foundation.

Note for media only: To obtain a copy of the embargoed Cancer Cell paper, “Lung Cancer Signatures in Plasma Based on Proteome Profiling of Mouse Tumor Models,” please contact Mary Beth O’Leary in the journal’s press office at moleary@cell.com or 617-397-2802. To arrange an interview with Hanash, please contact Kristen Woodward in media relations at the Hutchinson Center at kwoodwar@fhcrc.org or 206-667-5095.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit fhcrc.org.

Kristen Woodward | Newswise Science News
Further information:
http://www.fhcrc.org

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>