Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Blood Proteins Associated with Early Development of Lung Cancer

14.09.2011
A research team led by Fred Hutchinson Cancer Research Center has discovered proteins in the blood that are associated with early lung cancer development in mice and humans. The advance brings the reality of a blood test for the early detection and diagnosis of lung cancer a step closer.

The findings, by a team led by Samir Hanash, M.D., Ph.D., head of the Hutchinson Center’s Molecular Diagnostics Program and member of its Public Health Sciences Division, are published online Sept. 12 ahead of the Sept. 13 print issue of Cancer Cell.

“A major feature of this study was that we were able to replicate findings from mouse models of lung cancer in blood samples from humans with lung cancer both at the time of diagnosis and, importantly, prior to the onset of symptoms and diagnosis,” Hanash said. “Our data showed that the protein markers that were tested showed similar concordance between lung cancer in the mouse and lung cancer in humans. This means that developing a blood test to detect lung cancer is increasingly within reach.”

The blood protein signatures discovered in the future may be used in a blood test to not only screen for lung cancer among high-risk individuals such as current and former smokers, but to aid in diagnosis, distinguishing between various subtypes of the disease, such as small-cell lung cancer and lung adenocarcinoma.

Hanash envisions that such a test could be used together with imaging technologies such as CT screening to monitor people at high risk of developing the disease.

“There is a substantial need for simple, non-invasive means to detect lung cancer. While imaging-based screening to detect lung cancer has shown promise, blood-based diagnostics provide a complementary means for detection, disease classification, and monitoring for cancer progression and regression,” the authors wrote.

For the study, the researchers conducted in-depth blood protein analysis of three mouse models of lung adenocarcinoma and a genetically engineered mouse model of small-cell lung cancer. To further refine the results, they compared these lung cancer protein profiles to those from other well-established mouse models of pancreatic, ovarian, colon, prostate and breast cancer, as well as two mouse models of inflammation without the presence of cancer. Several protein signatures emerged that were specific to lung cancer:
• In models of lung adenocarcinoma, the researchers uncovered a set of elevated proteins that are regulated by the NKX2.1 transcription factor, which has been linked to lung development and function. They also discovered a network of dysregulated proteins linked to epidermal growth factor receptor which, when mutated in lung tissue, is associated with cancer development. Levels of these proteins returned to near normal upon treatment with a tyrosine kinase inhibitor, an anti-cancer drug.

• In a model of small-cell lung cancer, the researchers found a distinct blood protein signature that was associated with neuroendocrine development.

To determine whether these protein signatures in mice were relevant to human lung cancer, the researchers analyzed blood samples from 28 smokers who had been newly diagnosed with operable lung cancer and blood samples from 26 other subjects that were obtained up to a year before lung cancer was diagnosed. For comparison purposes they also analyzed blood from a similar number of matched, cancer-free controls.

The researchers found striking similarities between the protein signatures in mice and human. For example, in mice with small-cell lung cancer, they found elevated levels of a neural protein called Robo1. They also found significantly increased levels of this protein in patients with small-cell lung cancer as compared to matched human controls.

“Additional validation studies are in progress to further determine the sensitivity and specificity of the marker panels,” Hanash said.

Collaborators on the study included researchers from Memorial Sloan-Kettering Cancer Center, the National Human Genome Research Institute, Yale University School of Medicine, Stanford University, the University of Texas Southwestern Medical Center, and Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Harvard Medical School.

Funding for the research came from the NCI Mouse Models of Human Cancer Program, the NCI Early Detection Research Network, the Canary Foundation, the Thomas G. Labrecque Foundation, the Uniting Against Lung Cancer Foundation, the Department of Defense Congressionally Directed Lung Cancer Research Program and the Parker B. Francis Fellowship Program of the Francis Family Foundation.

Note for media only: To obtain a copy of the embargoed Cancer Cell paper, “Lung Cancer Signatures in Plasma Based on Proteome Profiling of Mouse Tumor Models,” please contact Mary Beth O’Leary in the journal’s press office at moleary@cell.com or 617-397-2802. To arrange an interview with Hanash, please contact Kristen Woodward in media relations at the Hutchinson Center at kwoodwar@fhcrc.org or 206-667-5095.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit fhcrc.org.

Kristen Woodward | Newswise Science News
Further information:
http://www.fhcrc.org

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>