Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Design Alzheimer’s Antibodies

13.12.2011
Researchers at Rensselaer Polytechnic Institute have developed a new method to design antibodies aimed at combating disease. The surprisingly simple process was used to make antibodies that neutralize the harmful protein particles that lead to Alzheimer’s disease.

The process is reported in the Dec. 5 Early Edition of the journal Proceedings of the National Academy of Sciences (PNAS). The process, outlined in the paper, titled “Structure-based design of conformation- and sequence-specific antibodies against amyloid â,” could be used as a tool to understand complex disease pathology and develop new antibody-based drugs in the future.

Antibodies are large proteins produced by the immune system to combat infection and disease. They are comprised of a large Y-shaped protein topped with small peptide loops. These loops bind to harmful invaders in the body, such as a viruses or bacteria. Once an antibody is bound to its target, the immune system sends cells to destroy the invader. Finding the right antibody can determine the difference between death and recovery.

Scientists have long sought methods for designing antibodies to combat specific ailments. However, the incredible complexity of designing antibodies that only attached to a target molecule of interest has prevented scientists from realizing this ambitious goal.

When trying to design an antibody, the arrangement and sequence of the antibody loops is of utmost importance. Only a very specific combination of antibody loops will bind to and neutralize each target. And with billions of different possible loop arrangements and sequences, it is seemingly impossible to predict which antibody loops will bind to a specific target molecule.

The new antibody design process was used to create antibodies that target a devastating molecule in the body: the Alzheimer’s protein. The research, which was led by Assistant Professor of Chemical and Biological Engineering Peter Tessier, uses the same molecular interactions that cause the Alzheimer’s proteins to stick together and form the toxic particles that are a hallmark of the disease.

“We are actually exploiting the same protein interactions that cause the disease in the brain to mediate binding of antibodies to toxic Alzheimer’s protein particles,” Tessier said.

Alzheimer’s disease is due to a specific protein – the Alzheimer’s protein – sticking together to form protein particles. These particles then damage the normal, healthy functions of the brain. The formation of similar toxic protein particles is central to diseases such as Parkinson’s and mad cow disease.

Importantly, the new Alzheimer’s antibodies developed by Tessier and his colleagues only latched on to the harmful clumped proteins and not the harmless monomers or single peptides that are not associated with disease.

Tessier and his colleagues see the potential for their technique being used to target and better understand similar types of protein particles in disorders such as Parkinson’s disease.

“By binding to specific portions of the toxic protein, we could test hypotheses about how to prevent or reverse cellular toxicity linked to Alzheimer’s disease,” Tessier said.

In the long term, as scientists learn more about methods to deliver drugs into the extremely well-protected brain tissue, the new antibody research may also help to develop new drugs to combat disorders such as Alzheimer’s disease.

The research was funded by the Alzheimer’s Association, the National Science Foundation (NSF), and the Pew Charitable Trust.

Tessier was joined in the research by Rensselaer graduate students Joseph Perchiacca (co-first author), Ali Reza Ladiwala (co-first author), and Moumita Bhattacharya.

Gabrielle DeMarco | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>