Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research offers means to detoxify mycotoxin-contaminated grain intended for ethanol, animal feed

13.09.2011
Using barley as the raw material for ethanol production results in an additional product – dried grains for animal feed.

But the presence of a fungal pathogen sometimes found in barley can result in a lethal toxin, called mycotoxin, in the animal feed. Now, Virginia Tech and Agricultural Research Service, USDA researchers have shown that newly developed transgenic yeast used during fermentation will help modify the mycotoxin in the animal feed product to a less toxic form. The research is published online in the September issue of Biotechnology for Biofuels.

New varieties of hulless winter barley have almost as much starch as corn and can be grown at times and in places where corn cannot, offering a flexible resource. When processed for ethanol, the versatile grain also provides a wholesome animal feed – unless contaminated. Of particular concern are trichothecene mycotoxins, which inhibit protein synthesis, an essential function of all tissues. The result can be immune system suppression and reproductive problems. Animals usually refuse to eat infected grain; otherwise death would be the eventual result.

"So we decided to see if the toxin could be modified to a less toxic product during fermentation," said Piyum A. Khatibi of Long Island, .N.Y., at that time a Ph.D. student in plant pathology, physiology, and weed science in the College of Agriculture and Life Sciences at Virginia Tech.

Khatibi was working on the problem of trichothecene contamination of grains with David Schmale, associate professor of food safety and plant biosecurity in the college, and plant breeder Carl Griffey, professor of crop and soil environmental science in the college. Griffey's barley team has developed resistant varieties of barley, as well as high starch varieties. The Virginia Tech barley team, made up of Wynse Brooks, research associate; Mark Vaughn, research specialist; and Greg Berger of Schulenburg, Tex., a Ph.D. student, all in crop and soil environmental sciences, has been collaborating with Kevin Hicks, team leader, and John Nghiem, chemical engineer, at the USDA Agricultural Research Service Sustainable Biofuels research team in Wyndmoor, Pa. – a partnership that began in 2001.

The Virginia Tech and USDA researchers decided to go after the most common mycotoxin in barley, deoxynivalenol (DON).

Previous research on a fungus (Fusarium graminearum) that produces DON in barley has identified several genes that convert trichothecenes to less toxic products. The research team selected two of these genes (TRI101 and TRI201), introduced them into a laboratory yeast strain (RW2802), and compared the results to commercial yeast that has been optimized to produce fuel ethanol. The researchers fermented four varieties of barley that Griffey's team created for biofuel use, hulless Eve and VA06H-25 and hulled Thoroughbred and Price.

Measurements of the resulting mash and animal feed revealed that DON had indeed been converted to a less toxic form (3ADON) during fermentation, with the transgenic yeast expressing either TRI101 or TRI201. The researchers wrote, "We found large reductions in DON via conversion (52.4 percent to 58.1 percent) during fermentation of the hulless barley line VA06H-25, which contained the highest levels of DON in its starting ground grain."

"But in all cases, using the yeast with the added genes resulted in decreased DON as it was converted to the less toxic form (3ADON)," said Khatibi.

"To our knowledge, this is the first detailed report of yeast expressing a DON modification enzyme during barley ethanol fermentation," said Schmale.

Khatibi said, "This study sets the foundation for modifying mycotoxins during fermentation and provides a model for future work when we find an enzyme that can actually destroy the toxin."

The research was supported by Schmale and Griffey's grants from the USDA, Virginia Agriculture Council, and Maryland Grain Producers Utilization Board.

The project was part of Khatibi's dissertation research. He graduated in August and is now a postdoctoral associate working in Schmale's lab continuing his work in mycotoxin detoxification.

The article, " Conversion of deoxynivalenol to 3-acetyldeoxynivalenol in barley derived fuel ethanol co-products with yeast expressing trichothecene 3-O-acetyltransferases," was written by Khatibi; Justin Montanti, engineering technician with the Sustainable Biofuels research team; Nghiem; Hicks; Berger; Brooks; Griffey; and Schmale.

The article is posted at http://www.biotechnologyforbiofuels.com/content/4/1/26

Learn more about the Schmale lab at http://www.ppws.vt.edu/~dschmale/

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>