Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research provides new findings on drug delivery with nanoparticles

02.03.2011
Researchers are able to produce medicine encapsulated in nanoparticles the size of viruses, but new research has shown another great challenge in nanomedicine – the immune system – and the importance of the coating polymers on the nanoparticle surface.

Researchers have over time been able to show that medicine designed at nanoscale offers unprecedented opportunities for targeted treatment of serious diseases such as cancer. However, now research also shows that the body’s immune system plays a significant part in the drug delivery process.

“Researchers today are able encapsulate medicine in nanoparticles the size of viruses. The nanoparticles are effective for drug delivery – the delivery of the medicine to the body – because they can very precisely find diseased cells and carry the medicine to them. This means that you can suffice with less dosage and thereby fewer side effects,” explains Professor Moein Moghimi from the Faculty of Pharmaceutical Sciences at the University of Copenhagen.

Professor Moghimi has along with colleagues at the University of Brighton and the Technical University of Denmark recently published a landmark paper in ACS Nano regarding the immune system’s attack on nanoparticles.

A water disguise
The new research has shown that the coating of the nanoparticle surface has great influence on the activation of the immune system – the particle’s polymer coating can be designed in various ways, and the form can drastically change the body’s immune response.

“Drug delivery with nanoparticles camouflaged as water soluble polymers has proven very effective. One way of delivering drugs safely to diseased sites in the body is to encapsulate them in small polymeric particles in similar size to viruses. However, when injected into the blood these particles are intercepted by the body’s defence system. This can be overcome by camouflaging the surface of these nanocarriers with water soluble polymers. This makes the surface ‘water-like’ and less visible to the immune system,” says Professor Moghimi.

Significance of changing the coating polymers
Professor Moghimi works at the Department of Pharmaceutics and Analytical Chemistry where he heads the Centre for Pharmaceutical Nanotechnology and Nanotoxicology, which is supported by the Danish Agency for Science, Technology and Innovation. This work was done as part of ongoing research at the Centre.

Professor Moghimi’s main focus is nanotoxicology – and the possible consequences of drug delivery with nanoparticles.

“Our newest research indicates that we should be very cautious when designing the surface of the nanoparticles. Remarkably, changing the conformation of the coating polymers on nanoparticle surface from a ‘mushroom-type’ to a ‘brush-type’ appearance can switch complement activation from one pathway to another,” explains Professor Moghimi.

The research demonstrates difficulty in design and surface engineering of polymeric nanoparticles such that it is hydrophilic enough to be compatible with biological fluids and yet prevent complement activation. This is also very important from clinical perspectives since complement activation may induce adverse reactions in some patients.

The importance of this work was also highlighted in an all exclusive "News and Views" by the prestigious Nature Nanotechnology.

Contact:
Professor Moein Moghimi, e-mail: momo@farma.ku.dk, mobile: +45 51 21 79 75.

Moein Moghimi | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>