Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rescue of Alzheimer's memory deficit achieved by reducing 'excessive inhibition'

13.06.2014

A new drug target to fight Alzheimer's disease has been discovered by a research team led by Gong Chen, a Professor of Biology and the Verne M. Willaman Chair in Life Sciences at Penn State University.

The discovery also has potential for development as a novel diagnostic tool for Alzheimer's disease, which is the most common form of dementia and one for which no cure has yet been found. A scientific paper describing the discovery will be published in Nature Communications on 13 June 2014.


A new drug target to fight Alzheimer's disease has been discovered by a research team led by Gong Chen, a Professor of Biology and the Verne M. Willaman Chair in Life Sciences at Penn State University. The discovery also has potential for development as a novel diagnostic tool for Alzheimer's disease, which is the most common form of dementia and one for which no cure has yet been found. This image is a microscopic view showing high concentrations of the GABA neurotransmitter (red) in the reactive astrocytes (green) in a human brain with Alzheimer's disease.

Credit: Gong Chen lab, Penn State University

Chen's research was motivated by the recent failure in clinical trials of once-promising Alzheimer's drugs being developed by large pharmaceutical companies. "Billions of dollars were invested in years of research leading up to the clinical trials of those Alzheimer's drugs, but they failed the test after they unexpectedly worsened the patients' symptoms," Chen said.

The research behind those drugs had targeted the long-recognized feature of Alzheimer's brains: the sticky buildup of the amyloid protein known as plaques, which can cause neurons in the brain to die. "The research of our lab and others now has focused on finding new drug targets and on developing new approaches for diagnosing and treating Alzheimer's disease," Chen explained.

"We recently discovered an abnormally high concentration of one inhibitory neurotransmitter in the brains of deceased Alzheimer's patients," Chen said. He and his research team found the neurotransmitter, called GABA (gamma-aminobutyric acid), in deformed cells called "reactive astrocytes" in a structure in the core of the brain called the dentate gyrus. This structure is the gateway to hippocampus, an area of the brain that is critical for learning and memory.

Chen's team found that the GABA neurotransmitter was drastically increased in the deformed versions of the normally large, star-shaped "astrocyte" cells which, in a healthy individual, surround and support individual neurons in the brain. "Our research shows that the excessively high concentration of the GABA neurotransmitter in these reactive astrocytes is a novel biomarker that we hope can be targeted in further research as a tool for the diagnosis and treatment of Alzheimer's disease," Chen said.

Chen's team developed new analysis methods to evaluate neurotransmitter concentrations in the brains of normal and genetically modified mouse models for Alzheimer's disease (AD mice). "Our studies of AD mice showed that the high concentration of the GABA neurotransmitter in the reactive astrocytes of the dentate gyrus correlates with the animals' poor performance on tests of learning and memory," Chen said.

His lab also found that the high concentration of the GABA neurotransmitter in the reactive astrocytes is released through an astrocyte-specific GABA transporter, a novel drug target found in this study, to enhance GABA inhibition in the dentate gyrus. With too much inhibitory GABA neurotransmitter, the neurons in the dentate gyrus are not fired up like they normally would be when a healthy person is learning something new or remembering something already learned.

Importantly, Chen said, "After we inhibited the astrocytic GABA transporter to reduce GABA inhibition in the brains of the AD mice, we found that they showed better memory capability than the control AD mice. We are very excited and encouraged by this result, because it might explain why previous clinical trials failed by targeting amyloid plaques alone.

One possible explanation is that while amyloid plaques may be reduced by targeting amyloid proteins, the other downstream alterations triggered by amyloid deposits, such as the excessive GABA inhibition discovered in our study, cannot be corrected by targeting amyloid proteins alone. Our studies suggest that reducing the excessive GABA inhibition to the neurons in the brain's dentate gyrus may lead to a novel therapy for Alzheimer's disease. An ultimate successful therapy may be a cocktail of compounds acting on several drug targets simultaneously."

In addition to Chen, other members of the research team include Postdoctoral Scholar Zheng Wu and Graduate Researcher Ziyuan Guo at Penn State, and Marla Gearing at Emory University.

This research received support from the National Institutes of Health and Penn State University's Eberly College of Science Stem Cell Fund.

CONTACTS

Gong Chen: gongchen@psu.edu

Barbara Kennedy (PIO): science@psu.edu, (+1) 814 863 4682

IMAGES

A high-resolution image is online at http://science.psu.edu/news-and-events/2014-news/Chen6-2014

Barbara K. Kennedy | Eurek Alert!

Further reports about: Alzheimer's GABA astrocytes concentration deficit drugs inhibitory neurons proteins structure therapy

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>