Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reprogrammed human blood cells show promise for disease research

02.07.2010
Cells from frozen human blood samples can be reprogrammed to an embryonic stem-cell-like state, according to Whitehead Institute researchers. These cells can be multiplied and used to study the genetic and molecular mechanisms of blood disorders and other diseases.

RELEVANCE: Blood samples represent an easily accessible source of human cells for research and offer a host of practical advantages over the reliance on skin biopsies to attain cell samples. The breakthrough described here allows for study of cells from frozen blood samples already stored at blood banks—even from deceased patients.

CAMBRIDGE, Mass. (July 1, 2010) – Cells from frozen human blood samples can be reprogrammed to an embryonic-stem-cell-like state, according to Whitehead Institute researchers. These cells can be multiplied and used to study the genetic and molecular mechanisms of blood disorders and other diseases.

The research is reported in the July 2 issue of Cell Stem Cell.

To date, most cellular reprogramming has relied on skin biopsy or the use of stimulating factors to obtain the cells for induction of pluripotency. This work shows for the first time that cells from blood samples commonly drawn in doctor's offices and hospitals can be used to create induced pluripotent stem (iPS) cells.

Using blood as a cell source of iPS cells has two major advantages.

"Blood is the easiest, most accessible source of cells, because you'd rather have 20 milliliters of blood drawn than have a punch biopsy taken to get skin cells," says Judith Staerk, first author of the Cell Stem Cell paper and a postdoctoral researcher in the lab of Whitehead Founding Member Rudolf Jaenisch.

Also, blood collection and storage is a well established part of the medical system.

"There are enormous resources—blood banks with samples from patients—that may hold the only viable cells from patients who may not be alive anymore or from the early stage of their diseases," says Jaenisch, who is also a professor of biology at MIT. "Using this method, we can now resurrect those cells as induced pluripotent stem cells. If the patient had a neurodegenerative disease, you can use the iPS cells to study that disease."

iPS cells are reprogrammed from an adult state to an embryonic stem-cell-like state by inserting four reprogramming genes into the adult cells' DNA. These reprogramming factors convert the adult cells, with defined cell functions, into much more flexible iPS cells. iPS cells can then be nudged to divide repeatedly or turn into almost any cell type found in the body, allowing scientists to create large amounts of the specific cells needed to study a disease, such as dopamine-producing neurons for Parkinson's disease research.

Unlike other cell types, human blood cells had proven extremely difficult to convert into iPS cells. Working with frozen blood samples similar to those found in a blood bank, Staerk found that she could convert the blood cells by inserting a "cassette" of the reprogramming factors end to end, rather than inserting each of the factors separately.

Not all of the cells in the blood samples were converted to iPS cells. Blood is composed of red cells that carry oxygen throughout the body, white cells that are part of the immune system, and platelets that clot the blood after an injury. Because red blood cells and platelets lack nuclei containing DNA, they cannot be converted to iPS cells. The only white bloods cells converted to iPS cells were T cells and a few myeloid cells. B cells failed to reprogram, most likely because the experiment's environment lacked the chemicals needed for successful B-cell conversion.

Staerk is particularly interested in using these iPS cells to study blood diseases.

"With this method, you could reprogram blood samples from patients where the underlying cause of their diseases is not known, and get cell numbers large enough to screen for genetic factors and study the molecular mechanisms underlying the blood disorders," she says. "That's a big advance, especially if the patient is not alive anymore and new material cannot be obtained."

This research was supported by the National Institutes of Health (NIH) and the Human Frontier Science Program (HFSP).

Rudolf Jaenisch's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a professor of biology at Massachusetts Institute of Technology.

Full Citations:

"Reprogramming of human peripheral blood cells to induced pluripotent stem cells"

Cell Stem Cell, July 2, 2010.

Judith Staerk (1), Meelad M. Dawlaty (1), Qing Gao (1) Dorothea Maetzel (1) Jacob Hanna (1), Cesar A. Sommer (2), Gustavo Mostoslavsky (2), and Rudolf Jaenisch (1,3).

1. The Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.
2. Section of Gastroenterology, Department of Medicine and Center for Regenerative Medicine (CReM), Boston University School of Medicine, Boston, MA 02118, USA.

3. Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA.

Nicole Giese | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>