Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria shed light on an important group of human proteins

21.11.2007
A collaboration between researchers in Switzerland, the UK and France has led to the solution of the first crystal structure of a member of the Rhesus protein family and thereby shed new light on a group of proteins of great importance in human transfusion medicine. The UK group was led by Professor Mike Merrick in the Department of Molecular Microbiology at the John Innes Centre.

Ammonium is a fundamental source of nitrogen for almost all living cells but in excess it can also potentially be toxic. Bacteria, fungi and plants take up ammonium using proteins, called Ammonium Transport (Amt) proteins, which span the membranes of cells.

Animals use a related family of proteins, known as the Rhesus (Rh) proteins, to move ammonium across cell membranes. In humans the Rh proteins are also responsible for the Rhesus negative blood type found in 15% of the human population.

Work on the mode of action of the Amt proteins has been pioneered by studies in the laboratory of Professor Mike Merrick in the Department of Molecular Microbiology at JIC. In collaboration with researchers at the Paul Sherrer Institute in Switzerland and France’s Université Paris Descartes and Institut Jacques Monod, Prof. Merrick’s group have now taken advantage of the fact that a Rhesus protein has been found to be made by a bacterium, Nitrosomonas europaea.

... more about:
»Human »Rhesus »cell membrane

Publishing in the journal Proceedings of the National Academy of Sciences of the U.S.A. Online Early Edition they have determined at very high resolution (1.3 Å), the first X-ray crystal structure of a Rhesus protein. This offers important insights into how these proteins facilitate the movement of ammonium across cell membranes.

It also gives new information about the likely structure of these clinically important proteins in humans. For instance, this research strongly suggests that the equivalent human proteins are likely to be trimers and not tetramers as previously proposed.

Andrew Chapple | EurekAlert!
Further information:
http://www.bbsrc.ac.uk
http://www.pnas.org/cgi/doi/10.1073/pnas.0706563104
http://www.psi.ch/

Further reports about: Human Rhesus cell membrane

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>