Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism for the in-vivo transport of siRNA How small RNAs enter mammalian cells

18.09.2007
It all started with flowers: in the nineties of the last century Norwegian researchers discovered that additional copies of a particular gene in petunias inhibited its activity instead of reinforcing it as had been assumed.

A few years later it was found that the mechanism is based on the degradation of messenger RNA in the cells. Finally, in the late nineties the Nobel prizewinners Andrew Fire and Craig Mello established the technique of RNA interference, in which double-stranded RNA switches genes off efficiently and specifically. The scientists used the nematode (roundworm) Caenorhabditis elegans to study this. Subsequently, however, considerable problems arose in the attempt to transfer the strategy used by Mello and Fire to vertebrates.

In particular the administration of small RNAs, known as siRNAs (small interfering RNAs), in animals proved difficult. Although it was possible to administer siRNAs successfully by using various methods such as high-pressure injections or in conjunction with cholesterol, the underlying mechanisms remained obscure. Markus Stoffel, ETH Zurich Professor at the Institute for Molecular Systems Biology, together with chemists from the Alnylam Company, has now succeeded in elucidating the mechanism for the uptake of siRNA in combination with fatty acids in mammals. The corresponding paper, which has just been published in the scientific journal “Nature Biotechnology” and will also adorn the title page of the printed version in October, represents the basis for possible siRNA therapies, among other things. This is because Stoffel showed that siRNA can be coupled effectively to various fatty acids.

Cholesterol transporters also play a part

... more about:
»HDL »LDL »RNA »acid »cholesterol »enter »fatty acids »siRNA »small

Stoffel and his team turned to chemically modified siRNAs in combination with cholesterol, not because the method based on this compound was particularly efficient but because it had the least side-effects. First of all the researchers wanted to know whether siRNA was capable of being bonded to other lipophilic substances in addition to cholesterol, and caused a reduction in the activity of a target gene in the liver at the same time. It turned out that there are several such fatty acids. But what is it in the blood to which all these RNAs conjugated with so-called lipophilic substances bond? The ETH Zurich researchers discovered that, depending on the fatty acid used, the binding partners are the well-known cholesterol transporters High Density Lipoproteins (HDL) and Low Density Lipoproteins (LDL) as well as the albumin (protein) present everywhere in the blood. Without these lipoprotein particles there is no uptake of siRNAs into the tissues, as became apparent from further experiments. In an additional experiment the scientists demonstrated that the uptake can be made considerably more efficient if the siRNA-fatty acid molecules are already firmly bonded to HDL and LDL before being administered. Stoffel’s team also discovered that there is preferential uptake into different tissues depending on whether an siRNA-fatty acid molecule is bonded to HDL or LDL: all LDL compounds trigger responses in the liver, but HDL compounds also do so in the intestine or kidneys.

An irritating finding

The latter finding indicated that the uptake proceeds via HDL and LDL receptors. The researchers proved this assumption by inactivating the receptors, with the result that uptake no longer occurred. Despite the clarity of the finding, it irritated Stoffel slightly. He found it hard to imagine that the siRNAs were able to enter the cell via the normal absorption route like HDL, because this route leads into the cell’s own digestive system with lysosomes that would degrade the siRNAs. So how would the siRNAs be able to avoid this degradation? Stoffel concluded that they simply use a different doorway into the cell. Thus the HDL and LDL receptors would only act as docking stations but not as an entry portal.

But what might the alternative doors be? The ETH Zurich researchers remembered that a gene product Sid1, which is necessary for the cellular uptake of siRNA, occurs in the worm Caenorhabditis elegans. The corresponding gene also has a homologue in mammals. By inactivating it, the scientists showed that it is also necessary in mammals. The overall result from all the discoveries is a mechanism for siRNA administration that starts with the bonding of siRNAs to particular fatty acids. This combination is linked to lipophilic proteins that bring about docking onto the tissue cells. The doors that allow the siRNA-fatty acid molecules to enter are then situated close to the docking station.

Prospects for new therapies and research

Stoffel thinks that through their work they were able to determine the elements that are most important for the uptake mechanism. However, he says it is very likely that yet more molecules play a part. But since an insight into the mechanism now exists for the first time, it will be possible to make specific improvements in the technique. For example Stoffel’s group wants to find out whether HDL and LDL can be replaced by synthetic proteins or lipid-rich particles. He says that basically the technique has the potential to be used in gene therapy. However, the determination of the siRNA doors also opens up new approaches to fundamental research. Instead of siRNA it might also be possible to smuggle in miRNAs, another group of small RNAs, in the same way. The same mechanism ought to work for miRNA inhibitors as well. Since miRNA is increasingly “suspected” of occupying a decisive role in gene regulation in nature, its targeted administration or inhibition could yield completely new insights.

Roman Klingler | alfa
Further information:
http://www.nature.com/nbt/index.html

Further reports about: HDL LDL RNA acid cholesterol enter fatty acids siRNA small

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>