Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC researcher identifies stem cells in tendons that regenerate tissue in animal model

11.09.2007
Finding promise new treatments for tendon injury and disease

Athletes know that damage to a tendon can signal an end to their professional careers. But a consortium of scientists, led in part by University of Southern California (USC) School of Dentistry researcher Songtao Shi, has identified unique cells within the adult tendon that have stem-cell characteristics—including the ability to proliferate and self-renew.

The research team was able to isolate these cells and regenerate tendon-like tissue in the animal model. Their findings hold tremendous promise for the treatment of tendon injuries caused by overuse and trauma.

The results of their research will be published in the October 2007 issue of the journal Nature Medicine and will be available online at www.nature.com/nm on Sunday, September 9, 2007.

... more about:
»Animal »Model »USC »tendon

Tendons, the tough band of specialized tissues that connect bone to muscle, are comprised of strong collagen fibrils that transmit force allowing the body to move. Tendon injuries are a common clinical problem as damaged tendon tissue heals slowly and rarely regains the integrity or strength of a normal, undamaged tendon.

“Clinically, tendon injury is a difficult one to treat, not only for athletes but for patients who suffer from tendinopathy such as tendon rupture or ectopic ossification,” Shi says. “This research demonstrates that we can use stem cells to repair tendons. We now know how to collect them from tissue and how to control their formation into tendon cells.”

Prior to this research, little existed on the cellular makeup of tendons and their precursors. By looking at tendons at the molecular level, the research team identified a unique cell population—termed tendon stem/progenitor cells (TSPCs) in both mice and adult humans—that when guided by a certain molecular environment, form into tendon cells. The team included leading scientists from the National Institute of Dental and Craniofacial Research at the National Institutes of Health, Johns Hopkins University and the University of Maryland School of Medicine.

Songtao Shi, a researcher for USC’s Center for Craniofacial Molecular Biology, a Division within the USC School of Dentistry, has published numerous studies on the role of stem cells in regeneration. He was part of an international research team that successfully generated tooth root and supporting periodontal ligaments to restore tooth function in the animal model. Earlier this year, his research was published in the journal Stem Cells after he and his team discovered that mesenchymal stem cells are capable of regenerating facial bone and skin tissue in the mouse and swine models.

Angelica Urquijo | EurekAlert!
Further information:
http://www.usc.edu
http://www.nature.com/nm

Further reports about: Animal Model USC tendon

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>