Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC researcher identifies stem cells in tendons that regenerate tissue in animal model

11.09.2007
Finding promise new treatments for tendon injury and disease

Athletes know that damage to a tendon can signal an end to their professional careers. But a consortium of scientists, led in part by University of Southern California (USC) School of Dentistry researcher Songtao Shi, has identified unique cells within the adult tendon that have stem-cell characteristics—including the ability to proliferate and self-renew.

The research team was able to isolate these cells and regenerate tendon-like tissue in the animal model. Their findings hold tremendous promise for the treatment of tendon injuries caused by overuse and trauma.

The results of their research will be published in the October 2007 issue of the journal Nature Medicine and will be available online at www.nature.com/nm on Sunday, September 9, 2007.

... more about:
»Animal »Model »USC »tendon

Tendons, the tough band of specialized tissues that connect bone to muscle, are comprised of strong collagen fibrils that transmit force allowing the body to move. Tendon injuries are a common clinical problem as damaged tendon tissue heals slowly and rarely regains the integrity or strength of a normal, undamaged tendon.

“Clinically, tendon injury is a difficult one to treat, not only for athletes but for patients who suffer from tendinopathy such as tendon rupture or ectopic ossification,” Shi says. “This research demonstrates that we can use stem cells to repair tendons. We now know how to collect them from tissue and how to control their formation into tendon cells.”

Prior to this research, little existed on the cellular makeup of tendons and their precursors. By looking at tendons at the molecular level, the research team identified a unique cell population—termed tendon stem/progenitor cells (TSPCs) in both mice and adult humans—that when guided by a certain molecular environment, form into tendon cells. The team included leading scientists from the National Institute of Dental and Craniofacial Research at the National Institutes of Health, Johns Hopkins University and the University of Maryland School of Medicine.

Songtao Shi, a researcher for USC’s Center for Craniofacial Molecular Biology, a Division within the USC School of Dentistry, has published numerous studies on the role of stem cells in regeneration. He was part of an international research team that successfully generated tooth root and supporting periodontal ligaments to restore tooth function in the animal model. Earlier this year, his research was published in the journal Stem Cells after he and his team discovered that mesenchymal stem cells are capable of regenerating facial bone and skin tissue in the mouse and swine models.

Angelica Urquijo | EurekAlert!
Further information:
http://www.usc.edu
http://www.nature.com/nm

Further reports about: Animal Model USC tendon

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>