Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extra gene copies were enough to make early humans' mouths water

11.09.2007
To think that world domination could have begun in the cheeks. That's one interpretation of a discovery, published online September 9 in Nature Genetics, which indicates that humans carry extra copies of the salivary amylase gene.

Humans have many more copies of this gene than any of their ape relatives, the study found, and they use the copies to flood their mouths with amylase, an enzyme that digests starch. The finding bolsters the idea that starch was a crucial addition to the diet of early humans, and that natural selection favored individuals who could make more starch-digesting protein.

"Extra gene copies are an easy way for evolution to ramp up expression of a protein," said Nathaniel Dominy, assistant professor of anthropology at University of California, Santa Cruz, and one of the paper's authors. "Why wait for chance mutations to improve gene function" Natural selection can favor duplicate copies of a gene that already works well, and enzyme production will increase."

Other primates eat mainly ripe fruits containing very little starch. A new ability to supplement the diet with calorie-rich starches could have fed our large brains and opened up new food supplies that fueled our unrivaled colonization of the planet, Dominy said.

... more about:
»Dominy »amylase »copies »meat »starch »tubers

The researchers sampled saliva from 50 European-American undergraduates and found as many as 15 copies of the amylase gene per person. By comparison, all 15 chimpanzees they sampled had exactly two copies each. Students with more copies of the gene also had higher concentrations of the enzyme in their spit.

Next, the team studied groups of humans with differing diets. They found a similar correspondence between the amount of starch in a group's diet and the average number of amylase gene copies its individuals possessed. For example, the Yakut of the Arctic, whose traditional diet centers around fish, had fewer copies than the related Japanese, whose diet includes starchy foods like rice, Dominy said. The same pattern existed for two Tanzanian tribes--the Datog, who raise livestock, and the Hadza, who primarily gather tubers and roots.

"Even though they're closely related genetically and live close to each other geographically, still there are big differences in the average number of copies in these populations," Dominy said. "So we felt like geography and relatedness are not driving these differences. It's got to be diet."

For Dominy and his coauthors, the finding goes beyond the mouth. In pondering human origins, Dominy said, anthropologists have long been stumped by the sudden, nearly simultaneous increases in our brain size, body size, and geographic range, while other apes changed little. Early humans simply must have found some source of better nutrition to make it all possible, they reasoned.

"That's the big mystery of paleoanthropology," Dominy said. "What changed" Why did our earliest human ancestors deviate from the pattern we see in living apes to evolve this incredibly large brain, which is very energetically expensive to maintain, and to become a much more efficient bipedal organism""

For years, the answer was thought to be the growing importance of meat in the diet, as early humans learned to hunt. But, Dominy pointed out, "Even when you look at modern human hunter-gatherers, meat is a relatively small fraction of their diet. They cooperate with language, use nets; they have poisoned arrows, even, and still it's not that easy to hunt meat. To think that, two to four million years ago, a small-brained, awkwardly bipedal animal could efficiently acquire meat, even by scavenging, just doesn't make a whole lot of sense."

Some anthropologists have begun to suspect the new source of food consisted of starches, stored by plants in the form of underground tubers and bulbs--wild versions of modern-day foods like carrots, potatoes, and onions. Once early humans learned to recognize tuber-forming plants, they opened up a food source unknown to other apes.

"It's kind of a goldmine," Dominy said. "All you have to do is dig it up."

Tubers may have been especially critical for the first widely successful humans, known as Homo erectus, who may have learned to cook with fire. Since this idea was proposed, about a decade ago, researchers have been looking for evidence to support or refute it--no easy task for a theory that concerns highly perishable food consumed two million years ago. But in work earlier this year, Dominy and his colleagues found that animals eating tubers and bulbs produce body tissues with an isotopic signature that matches what has been measured in early fossilized humans (see earlier press release at http://press.ucsc.edu/text.asp?pid=1251).

The new discovery is a separate line of evidence pointing to the importance of starch in human beginnings, Dominy said. When early humans mastered fire, cooking starchy vegetables would have made them even easier to eat, he added. At the same time it would have made extra amylase gene copies an even more valuable trait.

"We roast tubers, and we eat French fries and baked potatoes," Dominy said. "When you cook, you can afford to eat less overall, because the food is easier to digest. Some marginal food resource that you might only eat in times of famine, now you can cook it and eat it. Now you can have population growth and expand into new territories."

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

Further reports about: Dominy amylase copies meat starch tubers

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>