Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A stepwise retreat: how immune cells catchpathogens

10.07.2007
A stepwise retreat: how immune cells catch pathogens Researchers discover dynamic properties of immune cells? tentacles

To protect us from disease our immune system employs macrophages, cells that roam our body in search of disease-causing bacteria. With the help of long tentacle-like protrusions, macrophages can catch suspicious particles, pull them towards their cell bodies, internalise and destroy them. Using a special microscopy technique, researchers from the European Molecular Biology Laboratory (EMBL) now for the first time tracked the dynamic behaviour of these tentacles in three dimensions. In the current online issue of PNAS they describe a molecular mechanism that likely underlies the tentacle movement and that could influence the design of new nanotechnologies.

The long cell protrusions that macrophages use as tentacles to go fishing for pathogens are called filopodia. The internal scaffolds of these filopodia are long, dynamic filaments consisting of rows of proteins called actin. The filaments constantly grow and shrink by adding or removing individual actin building blocks. But the dynamic properties of the filopodia and the mechanical forces that they can apply are not fully understood. Using a special microscopy technique a team of researchers from the groups of Ernst Stelzer and Gareth Griffiths at EMBL could for the first time observe the tentacle dynamics in three dimensions and measure their properties to unprecedented detail.

?The filopodia stretch out from the cell surface and upon contact with a suspicious particle they attach to it and immediately retract to pull the particle towards the cell body,? says Holger Kress who carried out the research at EMBL and is now working at Yale University. ?We expected the tentacles to move in a continuous, smooth process, but surprisingly we observed discrete steps of filopodia retraction?

... more about:
»Dynamic »filopodia »properties »tentacle

Highly precise measurements allowed the scientists for the first time to determine the speed and the force of the retraction and revealed that each individual retraction step is 36 nanometres long. These parameters match the properties of a class of proteins called myosins suggesting them as the driving force of filopodia retraction. Myosins are motor proteins, proteins that move along actin filaments and transport cargo. Transporting the filopodia?s internal scaffold myosins help bringing about the retraction. Likely several copies of myosin proteins act in a synchronous fashion to bring about the tentacle motion.

?The insights we gained into the properties of filopodia retraction and the possible molecular mechanism underlying them could find applications in nanotechnology,? says Alexander Rohrbach a former member of Stelzer?s group who is now a professor at the University of Freiburg. ?Future synthetic nano-machines must integrate themselves into a system and have to react flexibly to changes within the system. Precisely these properties we have now observed in filopodia retraction. The fascinating principles, which we are beginning to understand, will certainly influence the design of such machines?

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.de

Further reports about: Dynamic filopodia properties tentacle

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>