Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Top-class equipment brings in international projects

10.07.2007
Millions of kroner invested in robots and analytical equipment have led to a higher level of activity in the biotechnology research group at SINTEF and NTNU, which has recently won key positions in several European projects.

“Systems biology” is in the process of taking off in Trondheim and at international level, and what is special this time is that Norwegian scientists are not belatedly linking up with European research, but hold a key position right from the start.

An imposing infrastructure has been built up in the course of the past ten years inside the buildings occupied by SINTEF Materials and Chemistry. Stimulated by the demanding requirements of Norwegian industry, NOK 6 – 8 million has been invested in robots and a total of NOK 18 million in laboratory equipment. Today, the equipment and laboratories are unique on both Norwegian and European levels.

Upgrading over the years

... more about:
»Norwegian »Projects »ROBOT »bacteria

Micro-organisms are used, among other things, to produce medicines and chemicals worth millions of kroner, as well as to support the development of a strong industrial cluster. SINTEF’s Department of Biotechnology has almost thirty years of experience of using bacteria in production processes.

Around 1990 there were four 10-litre bioreactors or fermenters in this department - in addition to a pilot plant with two large 300-litre and 1500-litre tanks. In the mid-90s, 32 new three-litre fermenters were added. “These were soon in full production”, says research scientist Håvard Sletta. “In fact, every year we run somewhere between 500 and 1000 fermentations with our equipment”.

As well as upgrading the fermentation side, the group has also built up a screening laboratory in which bacteria are cultivated on microlitre scale in order to test tens of thousands of strains of bacteria a year. While scientists once used toothpicks to manually pick out hundreds of bacterial cultures, work of this sort is done nowadays by robots, which can pick as many as 10,000 colonies a day and transfer them to the appropriate trays for recultivation and analysis.

“Selecting and cultivating good strains of bacteria plays an important role in our work”, says Sletta. We acquired our first robot in 2000, and we currently have three of them in the screening laboratory; picking out colonies, pipetting and diluting thousands of small sample cultures.

The analytical laboratory too is as good as complete, being equipped with mass spectrometers to analyse the bacterial samples. Everything is done efficiently and is quality-assured with the aid of the modern equipment. A new NOK 5 million investment programme is just round the corner.

Genetics and modelling

For the past few years, the group has been working on genetics, as a result of its desire for better control of the processes involved. In this area, the competence of the NTNU side is making a strong contribution.

At this point in time, the group is taking the next step, and starting research on systems biology, where the scientists’ aim is to develop mathematical models of living organisms. Among the strengths of the Norwegian group are cultivation and analysis, which have brought it into projects financed via ERA-Net, a cooperative venture that involves research councils in several countries.

“This is interesting for us”, says Sletta. “By drawing on the competence of our European partners, we can develop models that tell us how we need to change the bacteria or their conditions of cultivation in order to improve production. Our aim is that our models should be capable of predicting optimal conditions, thus enabling us to cut down on the number of test trials.

“Now we are beginning to harvest the fruits of upgrading our equipment. We are currently running a number of large projects in the laboratory today, we are generating new projects, and now we are also a member of European projects. With the new network, we can do things that we would not have able to manage otherwise”, says Håvard Sletta

Aase Dragland | alfa
Further information:
http://www.sintef.no

Further reports about: Norwegian Projects ROBOT bacteria

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>