Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Top-class equipment brings in international projects

Millions of kroner invested in robots and analytical equipment have led to a higher level of activity in the biotechnology research group at SINTEF and NTNU, which has recently won key positions in several European projects.

“Systems biology” is in the process of taking off in Trondheim and at international level, and what is special this time is that Norwegian scientists are not belatedly linking up with European research, but hold a key position right from the start.

An imposing infrastructure has been built up in the course of the past ten years inside the buildings occupied by SINTEF Materials and Chemistry. Stimulated by the demanding requirements of Norwegian industry, NOK 6 – 8 million has been invested in robots and a total of NOK 18 million in laboratory equipment. Today, the equipment and laboratories are unique on both Norwegian and European levels.

Upgrading over the years

... more about:
»Norwegian »Projects »ROBOT »bacteria

Micro-organisms are used, among other things, to produce medicines and chemicals worth millions of kroner, as well as to support the development of a strong industrial cluster. SINTEF’s Department of Biotechnology has almost thirty years of experience of using bacteria in production processes.

Around 1990 there were four 10-litre bioreactors or fermenters in this department - in addition to a pilot plant with two large 300-litre and 1500-litre tanks. In the mid-90s, 32 new three-litre fermenters were added. “These were soon in full production”, says research scientist Håvard Sletta. “In fact, every year we run somewhere between 500 and 1000 fermentations with our equipment”.

As well as upgrading the fermentation side, the group has also built up a screening laboratory in which bacteria are cultivated on microlitre scale in order to test tens of thousands of strains of bacteria a year. While scientists once used toothpicks to manually pick out hundreds of bacterial cultures, work of this sort is done nowadays by robots, which can pick as many as 10,000 colonies a day and transfer them to the appropriate trays for recultivation and analysis.

“Selecting and cultivating good strains of bacteria plays an important role in our work”, says Sletta. We acquired our first robot in 2000, and we currently have three of them in the screening laboratory; picking out colonies, pipetting and diluting thousands of small sample cultures.

The analytical laboratory too is as good as complete, being equipped with mass spectrometers to analyse the bacterial samples. Everything is done efficiently and is quality-assured with the aid of the modern equipment. A new NOK 5 million investment programme is just round the corner.

Genetics and modelling

For the past few years, the group has been working on genetics, as a result of its desire for better control of the processes involved. In this area, the competence of the NTNU side is making a strong contribution.

At this point in time, the group is taking the next step, and starting research on systems biology, where the scientists’ aim is to develop mathematical models of living organisms. Among the strengths of the Norwegian group are cultivation and analysis, which have brought it into projects financed via ERA-Net, a cooperative venture that involves research councils in several countries.

“This is interesting for us”, says Sletta. “By drawing on the competence of our European partners, we can develop models that tell us how we need to change the bacteria or their conditions of cultivation in order to improve production. Our aim is that our models should be capable of predicting optimal conditions, thus enabling us to cut down on the number of test trials.

“Now we are beginning to harvest the fruits of upgrading our equipment. We are currently running a number of large projects in the laboratory today, we are generating new projects, and now we are also a member of European projects. With the new network, we can do things that we would not have able to manage otherwise”, says Håvard Sletta

Aase Dragland | alfa
Further information:

Further reports about: Norwegian Projects ROBOT bacteria

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>