Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Top-class equipment brings in international projects

10.07.2007
Millions of kroner invested in robots and analytical equipment have led to a higher level of activity in the biotechnology research group at SINTEF and NTNU, which has recently won key positions in several European projects.

“Systems biology” is in the process of taking off in Trondheim and at international level, and what is special this time is that Norwegian scientists are not belatedly linking up with European research, but hold a key position right from the start.

An imposing infrastructure has been built up in the course of the past ten years inside the buildings occupied by SINTEF Materials and Chemistry. Stimulated by the demanding requirements of Norwegian industry, NOK 6 – 8 million has been invested in robots and a total of NOK 18 million in laboratory equipment. Today, the equipment and laboratories are unique on both Norwegian and European levels.

Upgrading over the years

... more about:
»Norwegian »Projects »ROBOT »bacteria

Micro-organisms are used, among other things, to produce medicines and chemicals worth millions of kroner, as well as to support the development of a strong industrial cluster. SINTEF’s Department of Biotechnology has almost thirty years of experience of using bacteria in production processes.

Around 1990 there were four 10-litre bioreactors or fermenters in this department - in addition to a pilot plant with two large 300-litre and 1500-litre tanks. In the mid-90s, 32 new three-litre fermenters were added. “These were soon in full production”, says research scientist Håvard Sletta. “In fact, every year we run somewhere between 500 and 1000 fermentations with our equipment”.

As well as upgrading the fermentation side, the group has also built up a screening laboratory in which bacteria are cultivated on microlitre scale in order to test tens of thousands of strains of bacteria a year. While scientists once used toothpicks to manually pick out hundreds of bacterial cultures, work of this sort is done nowadays by robots, which can pick as many as 10,000 colonies a day and transfer them to the appropriate trays for recultivation and analysis.

“Selecting and cultivating good strains of bacteria plays an important role in our work”, says Sletta. We acquired our first robot in 2000, and we currently have three of them in the screening laboratory; picking out colonies, pipetting and diluting thousands of small sample cultures.

The analytical laboratory too is as good as complete, being equipped with mass spectrometers to analyse the bacterial samples. Everything is done efficiently and is quality-assured with the aid of the modern equipment. A new NOK 5 million investment programme is just round the corner.

Genetics and modelling

For the past few years, the group has been working on genetics, as a result of its desire for better control of the processes involved. In this area, the competence of the NTNU side is making a strong contribution.

At this point in time, the group is taking the next step, and starting research on systems biology, where the scientists’ aim is to develop mathematical models of living organisms. Among the strengths of the Norwegian group are cultivation and analysis, which have brought it into projects financed via ERA-Net, a cooperative venture that involves research councils in several countries.

“This is interesting for us”, says Sletta. “By drawing on the competence of our European partners, we can develop models that tell us how we need to change the bacteria or their conditions of cultivation in order to improve production. Our aim is that our models should be capable of predicting optimal conditions, thus enabling us to cut down on the number of test trials.

“Now we are beginning to harvest the fruits of upgrading our equipment. We are currently running a number of large projects in the laboratory today, we are generating new projects, and now we are also a member of European projects. With the new network, we can do things that we would not have able to manage otherwise”, says Håvard Sletta

Aase Dragland | alfa
Further information:
http://www.sintef.no

Further reports about: Norwegian Projects ROBOT bacteria

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>