Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic analysis enables personalising of treatment of cancer of the lung and colon and of certain sarcomas

06.03.2007
Genetic analysis has enabled the personalising of the pharmaceutical treatment of patients with cancer, enhancing thereby therapeutic efficacy and minimising possible toxicity.

In concrete, the Biotechnology Laboratory team at the University Hospital (University of Navarra), in close collaboration with the Pharmacogenomics laboratory at the Centre for Applied Medical Research (CIMA) of the same University, undertook these analyses predictive of responses to pharmaceutical drugs in patients with cancer of the lung, the colon and certain types of sarcoma.

Research into the mutations of a gene known as EGFR that can be found altered in lung cancer may help to determine the response of a new group of pharmaceutical – the tyrosine quinase inhibitors of the epidermic growth factor receptor. Also, the presence of genetic changes in specific fragments of PDGFR-alfa genes as well a sin the c-kit gene can pinpoint which treatment is likely to be more efficacious in certain gastrointestinal sarcomas. In this respect, the Department of Oncology at the University Hospital (University of Navarra) and the Centre for Applied Medical Research (CIMA) of the same University are collaborating in the identification of these genetic changes based on the study of the tumour prior to the application of treatment in the patient.

We are currently analysing genetic changes which will help us define the parameters needed to interpret what the best set of pharmaceutical drugs might be to act on certain tumours, particularly cancers of the lung, of the colon and sarcomas.

DIn this way, which patients best respond to a specific treatment can be identified. At the same time, we manage to know the toxicity profile that may occur using these medicinal drugs.

Procedure

The procedure consists of a genetic analysis of a blood sample or of the cancerous tissue where the existence of certain mutations or polymorphisms are observed and enable us to predict what drugs are the most suitable for that particular patient. The analysis provides us with information about the most effective therapeutic option against the tumour, as well as what the potential side-effects are of this treatment on the patient. In this way a better therapeutic selection and individualisation for each patient is achieved.

The analysis of certain genetic variants called polymorphisms help to predict an increased toxicity risk due to treatment with certain antineoplasic pharmaceuticals. Providing the most suitable drug to each patient will mean reducing the symptoms of the toxicity - fatigue, digestive indisposition, cutaneous reaction, diarrhoea, vomiting, as well as alterations in the liver and kidney. In this way the patient will have a better quality of life.

A number of research projects undertaken by different teams have confirmed the use of these markers for response and toxicity and their role in drawing up more individualised therapeutic plan.

Irati Kortabitarte | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=1217

Further reports about: Analysis Cancer Pharmaceutical sarcoma therapeutic toxicity

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>