Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers at IRB Barcelona discover a new mechanism that regulates stem cell division

Errors in stem cell division can give rise to tumours. By studying stem cells in the fruit fly, scientists at the Institute for Research in Biomedicine (IRB Barcelona) have identified one of the mechanisms that govern how these cells divide. The study appears this week in the scientific journal Developmental Cell.

Stem cells have the extraordinary capacity to divide producing two very distinct cells: one retains stem cell identity and continues to undergo asymmetric division, while the other specializes for a specific function and shows limited capacity to divide. This strategy allows a single stem cell to generate great amounts of tissue during a lifetime.

To ensure the correct differential identity of the resulting cells, the complex apparatus that divides that stem cell in two must form along a pre-established axis. If this does not occur, the division may be symmetric, which will generate two identical stem cells. That is to say, instead of producing tissue, the stem cells with a “disoriented” division axis may give rise to more stem cells; this is potentially dangerous for the organism as it would lead to uncontrolled proliferation of this type of cell.

How is this danger avoided? Researchers headed by Cayetano González, ICREA Research Professor at IRB Barcelona, have studied stem cell division and discovered that one of the key factors lies in the behaviour of the intracellular structure known as the centrosome. Most animal cells have two centrosomes before division takes place and their position governs the direction of the division. In cells that divide symmetrically (giving rise to two identical cells), the two centrosomes of cell are practically identical. Surprisingly, Gonzalez and his team found striking differences in the two centrosomes of the stem cells they were studying. One is located in a fixed position and is very active during the entire cell cycle, while the other moves around the cell before coming to a standstill, becoming activated only seconds before division.

... more about:
»Division »IRB »centrosome

The most surprising aspect of this complex behaviour is its precise regulation. The imaginary line that passes through the centrosomes once they are both in position, coincides perfectly with the orientation in which the stem cell must divide to guarantee the asymmetry of daughter cells. The intracellular asymmetry of two functionally distinct centrosomes is a decisive factor in the regulation of asymmetric stem cell division and prevents the proliferation of these cells.

These studies have been possible thanks to sophisticated technology that combines the generation of genetically modified flies in which normally colourless cell components are stained, with advanced high resolution microscopy techniques, thereby allowing in vivo observations.

Elena Rebollo, member of the research team and first author of the study, explains that “thanks to these techniques and to hundreds of hours of filming, we have been able to observe the step-by-step process of stem cell division. We’ve even been able to identify one of the proteins that differentiates the centrosomes of the stem cell”. “This protein”, explains González, “is one of the tumour suppressors that we described in 2005, which suggests that the centrosome plays a key role in preventing these stem cells from becoming malignant; a question to which we are currently devoting considerable research effort”. These studies form part of a research line on the relation between stem cells and cancer followed by this laboratory (see press release: A new link between stem cells and cancer, 5 september 2005).

Sarah Sherwood | alfa
Further information:

Further reports about: Division IRB centrosome

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>