Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sox17 required for steps from embryonic to heart muscle cell

27.02.2007
An important choreographer of the complicated dance of signals, enzymes and proteins that takes embryonic stem cells through the steps to becoming a beating heart muscle cell is the gene Sox17, said researchers from Baylor College of Medicine in a report in the current issue of the Proceedings of the National Academy of Sciences.

To be precise, Sox17 is critical in transforming primitive mesoderm (an early layer of tissue in the embryo) into the more specialized cardiac mesoderm from which heart muscle develops, said Dr. Michael Schneider, senior researcher of the report.

"Heart muscle formation by embryonic stem cells is a complex, multi-step process," said Schneider, professor of medicine, molecular and cellular biology, and molecular physiology and biophysics at Baylor College of Medicine. "We have succeeded in uncoupling the formation of cardiac mesoderm from its antecedent steps. That discovery provides immediate insight into how one might seek to generate cardiac muscle more effectively from embryonic stem cells."

"One of the major challenges is the very meager ability of the heart muscle to restore itself after cell death," said Schneider. Heart muscle cells die acutely during heart attacks and sporadically in chronic heart failure.

"Identifying stem cells that can be encouraged along the path to becoming heart muscle is a paramount scientific goal," he said.

Embryonic stem cells are a potential source because they have the potential of becoming every type of cell in the body. However, much research remains before scientists can outline a blueprint for how these totally undifferentiated cells can be guided to the "fate" of becoming heart muscle selectively.

Schneider and his colleagues used proteins that block certain signals for cell specialization at the surface of mouse embryonic stem cells to pinpoint early steps that lead to the development of heart muscle. Then, using "gene chip" technology to measure the expression of 40,000 mouse genes simultaneously, Schneider and his colleagues identified the sudden expression of Sox17 as a potentially important step for the signals that lead to heart formation.

Using a technique called RNA interference, they then blocked the action of Sox17 in the embryonic stem cells. By doing so, they prevented the embryonic cells from becoming cardiac muscle, almost completely.

"Knocking down Sox17 (reducing expression of the gene) had a dramatic effect, both on genes for structural components of the heart and also genes for transcription factors that turn on the cardiac fate," said Schneider.

Ross Tomlin | EurekAlert!
Further information:
http://www.bcm.edu

Further reports about: Embryonic Sox17 cardiac embryonic stem cell heart muscle

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>