Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover new target in cancer mutation puzzle

20.02.2007
University of Rochester scientists, while investigating the two most frequent types of mutations in cancer, discovered a possible new route to treatment that would take advantage of the mutations instead of trying to repair them. The research is reported online this week in the journal Nature Structural & Molecular Biology.

In experiments with rodent and human cells, co-authors Mingxuan Xia, Ph.D., and Hartmut Land, Ph.D., explored how the Rho family of proteins, which are involved in cell movement, and thus in the progression from benign to malignant cancer, are controlled by two well-known cancer genes, p53 and Ras.

By closing in on this deadly collaboration, researchers showed for the first time why some molecules such as Rho are targeted by cancer genes – and how they might lead to a promising way to intervene against cancer.

"We have very little understanding of how Ras and p53 or any other potent gene mutations cooperate to cause malignant tumors," said Land, who is professor and chair of the Department of Biomedical Genetics and scientific director of the James P. Wilmot Cancer Center at the University of Rochester Medical Center. "But we have suspected for a long time that the way to develop rational searches for new drug targets is to first understand how these oncogenes cooperate. And in this study we've shown for the first time that this idea might work."

... more about:
»Mutation »Ras »Rho »p53 »proteins

Land was among the scientists in the mid-1980s who first discovered oncogene collaboration. Since then, his work has focused on the complex interplay necessary for malignancy. And while other researchers, for example, are seeking ways to normalize a faulty gene such as p53, which is involved in half of all human tumors, Land's research group is taking the opposite approach. They are looking for ways to stop tumors by interfering with features of cancer cells dependent upon p53 and Ras mutations.

For cancer to develop, several mutations must arise and collaborate within a single cell. Ras and p53 mutations are particularly dangerous, implicated in colon, pancreas, lung and other cancers. Ras is part of a family that transmits signals controlling the way cells behave. Hyperactive Ras can lead to the uncontrolled growth of tumors. On the other hand, p53 is a tumor suppressor gene. Mutant p53 loses its ability to suppress cancer cells.

The UR team found that when cells were activated with Ras alone, the Rho proteins relocated to the cell membrane, their place of action, but remained inactive and did not cause cell movement. However, when active Ras was in cells that also had a p53 loss-of-function mutation, the Rho proteins became activated by Ras and promoted cell movement.

The experiments showed that when p53 is functioning properly it appears to be able to suppress the Ras signals to Rho, and thus shut down the movement of cancer cells. This was a previously unknown mechanism of action for the p53 gene.

Someday Rho may prove to be an attractive target for therapy because it is highly active only in malignant cells and not in normal cells.

"Now that we understand more about the role of Rho proteins as a target of cooperating cancer gene mutations in tumors with p53 mutations, we will look for other molecules with similar features," Land said. "Our hope is that this line of research will give us a range of novel opportunities for treatments of cancer patients. We are at the beginning of a new and exciting road."

Leslie Orr | EurekAlert!
Further information:
http://www.urmc.rochester.edu

Further reports about: Mutation Ras Rho p53 proteins

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>