Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover new target in cancer mutation puzzle

20.02.2007
University of Rochester scientists, while investigating the two most frequent types of mutations in cancer, discovered a possible new route to treatment that would take advantage of the mutations instead of trying to repair them. The research is reported online this week in the journal Nature Structural & Molecular Biology.

In experiments with rodent and human cells, co-authors Mingxuan Xia, Ph.D., and Hartmut Land, Ph.D., explored how the Rho family of proteins, which are involved in cell movement, and thus in the progression from benign to malignant cancer, are controlled by two well-known cancer genes, p53 and Ras.

By closing in on this deadly collaboration, researchers showed for the first time why some molecules such as Rho are targeted by cancer genes – and how they might lead to a promising way to intervene against cancer.

"We have very little understanding of how Ras and p53 or any other potent gene mutations cooperate to cause malignant tumors," said Land, who is professor and chair of the Department of Biomedical Genetics and scientific director of the James P. Wilmot Cancer Center at the University of Rochester Medical Center. "But we have suspected for a long time that the way to develop rational searches for new drug targets is to first understand how these oncogenes cooperate. And in this study we've shown for the first time that this idea might work."

... more about:
»Mutation »Ras »Rho »p53 »proteins

Land was among the scientists in the mid-1980s who first discovered oncogene collaboration. Since then, his work has focused on the complex interplay necessary for malignancy. And while other researchers, for example, are seeking ways to normalize a faulty gene such as p53, which is involved in half of all human tumors, Land's research group is taking the opposite approach. They are looking for ways to stop tumors by interfering with features of cancer cells dependent upon p53 and Ras mutations.

For cancer to develop, several mutations must arise and collaborate within a single cell. Ras and p53 mutations are particularly dangerous, implicated in colon, pancreas, lung and other cancers. Ras is part of a family that transmits signals controlling the way cells behave. Hyperactive Ras can lead to the uncontrolled growth of tumors. On the other hand, p53 is a tumor suppressor gene. Mutant p53 loses its ability to suppress cancer cells.

The UR team found that when cells were activated with Ras alone, the Rho proteins relocated to the cell membrane, their place of action, but remained inactive and did not cause cell movement. However, when active Ras was in cells that also had a p53 loss-of-function mutation, the Rho proteins became activated by Ras and promoted cell movement.

The experiments showed that when p53 is functioning properly it appears to be able to suppress the Ras signals to Rho, and thus shut down the movement of cancer cells. This was a previously unknown mechanism of action for the p53 gene.

Someday Rho may prove to be an attractive target for therapy because it is highly active only in malignant cells and not in normal cells.

"Now that we understand more about the role of Rho proteins as a target of cooperating cancer gene mutations in tumors with p53 mutations, we will look for other molecules with similar features," Land said. "Our hope is that this line of research will give us a range of novel opportunities for treatments of cancer patients. We are at the beginning of a new and exciting road."

Leslie Orr | EurekAlert!
Further information:
http://www.urmc.rochester.edu

Further reports about: Mutation Ras Rho p53 proteins

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>