Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epigenetics to shape stem cell future

20.02.2007
Everyone hopes that one day stem cell-based regenerative medicine will help repair diseased tissue. Before then, it may be necessary to decipher the epigenetic signals that give stem cells their unique ability to self-renew and transform them into different cell types.

The hype over epigenetic research is because it opens up the possibility of reprograming cells. By manipulating epigenetic marks, cells can be transformed into other cell types without changing their DNA. It is simply a question of adding or removing the chemical tags involved.

Stem cells rely heavily on epigenetic signals. As a stem cell develops, chemical tags on the DNA or its surrounding histone proteins switch genes on or off, controlling a cell’s fate.

European labs are breaking ground in both the epigenetic and stem cell arenas. To build on this expertise and stimulate the exchange on novel technologies, the European Science Foundation organised the EuroSTELLS workshop ‘Exploring chromatin in stem cells.’ The event held on 23- 24 January, 2007 attracted 106 researchers from 15 countries to Montpellier, France.

... more about:
»Cell »Stem »epigenetic

“Epigenetics and stem cell biology are such clear strengths in the European research community,” remarked Bradley Bernstein, a guest speaker from Massachusetts General Hospital, Boston. “We’ve found ourselves working very hard in the US to catch up.”

Epigenetic research has benefited tremendously from genome technology, and work in the field is advancing at break-neck speed. “If you think that the first enzymes controlling histone methylation were found in 2001, the acceleration is tremendous,” says Robert Feil, a EuroSTELLS researcher based at the CNRS Institute of Molecular Genetics in Montpellier. “We are making good use of past investments in genome sequencing. In the next five years the technology will be ten times faster than it has been so far.”

Conference goers reported that new high-throughput approaches and refined analytical techniques promise to fill in some big gaps in understanding how epigenetic tags define a stem cell and how they can be manipulated. With this knowledge on board, researchers will be boosting the odds that one day stem cell therapies will reach the clinic.

EuroSTELLS is the European Collaborative Research (EUROCORES) programme on “Development of a Stem Cell Tool Box” developed by the European Science Foundation.

The European Science Foundation (ESF) provides a platform for its Member Organisations to advance European research and explore new directions for research at the European level.

Established in 1974 as an independent non-governmental organisation, the ESF currently serves 75 Member Organisations across 30 countries.

Thomas Lau | alfa
Further information:
http://www.esf.org/esf_pressarea_page.php?language=0§ion=6&year=2007&newsrelease=163

Further reports about: Cell Stem epigenetic

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>