Local range estimation in wild animals

A new class of computational methods has been developed to construct distributions of where such monitored organisms are most likely to be found in space and time using this data, and are much more accurate than previous methods when dealing with large sets of data.

Previous methods, called Kernel Methods, were based on associating a parametric distribution, such as a normal distribution, with each location point. The new methods, referred to as LoCoH (local convex hull) methods, are essentially non-parametric kernel methods where the kernel associated with each data point is constructed directly from that point and a given number of its nearest neighbors. These methods have application to all types of ecological and biological resource management problems, but will prove especially useful in evaluating the spatial needs of threatened species and designing parks to conserve them.

This study will be published on February 14, 2007 in PLoS ONE, the international, peer-reviewed, open-access, online publication from the Public Library of Science (PLoS)

Media Contact

Andrew Hyde alfa

More Information:

http://www.plosone.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors