Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Beyond the DNA: Chemical signatures reveal genetic switches in the genome

Study uses 'histone code' for functional genome annotation

Investigators from the Ludwig Institute for Cancer Research (LICR) and the University of California, San Diego (UCSD) School of Medicine have made a breakthrough in identifying functional elements in the human genome, according to a report published online today in Nature Genetics.

While the DNA sequence can identify genes (the 'what') within the genome, it cannot answer the more fundamental questions of 'how,' 'when' and 'where' gene products are expressed. However, the LICR team and collaborators have developed a novel method to identify and predict the 'promoter' and 'enhancer' regions that switch on transcription, the first step in gene expression. This study is an important step towards large-scale functional annotation of 'enhancers,' which establish the rate at which gene expression occurs and determine the tissues in which genes are expressed.

"The human genome is packaged within each cell by chromatin, a structure composed of DNA wrapped around proteins called histones," explains lead author Nathaniel Heintzman, from LICR and the UCSD Biomedical Sciences Graduate Program. "We used genome-scale approaches to analyze the chromatin architecture in human cells and discovered distinct signatures of modified histones that correspond to known promoters and enhancers. These findings enabled us to generate computational algorithms that identified hundreds of novel genomic regions with regulatory potential." Moreover, says Heintzman, this 'histone code' was able to accurately distinguish between promoters, from which gene transcription is directly initiated, and enhancer regions - some of which are very distant from the target gene - to which transcription-activating cofactors bind.

... more about:
»DNA »Histone »identify

According to LICR's Dr. Bing Ren, the study's senior author and assistant professor at UCSD's Department of Cellular and Molecular Medicine, the method is widely applicable and its unbiased approach is likely to yield new information on gene expression and how it is altered in disease. "The beauty of this approach is that it utilizes a chemical signature present on histones but not DNA. Existing methods to predict enhancers rely on the DNA sequence alone, but these are inadequate because we have an incomplete understanding of the sequence features that identify enhancers. The elucidation of a common histone modification signature will enable scientists to quickly identify enhancers and promoters for a gene, which will lead in turn to rapid identification of factors that control its expression." This method might also be used to identify the disruptions in gene networks that occur during cancer progression, says Dr. Ren, which might lead to novel strategies for cancer diagnosis.

Sarah L. White, Ph.D. | EurekAlert!
Further information:

Further reports about: DNA Histone identify

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>