Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New nanotechnology able to examine single molecules, aiding in determining gene expression

25.01.2007
A new nanotechnology that can examine single molecules in order to determine gene expression, paving the way for scientists to more accurately examine single cancer cells, has been developed by an interdisciplinary team of researchers at UCLA's California Nanosystems Institute (CNSI), New York University's Courant Institute of Mathematical Sciences, and Veeco Instruments, a nanotechnology company. Their work appears in the January issue of the journal Nanotechnology.

Previously, researchers have been able to determine gene expression using microarray technology or DNA sequencing. However, such processes could not effectively measure single gene transcripts—the building blocks of gene expression. With their new approach, the researchers of the work reported in Nanotechnology were able to isolate and identify individual transcript molecules—a sensitivity not achieved with earlier methods.

"Gene expression profiling is used widely in basic biological research and drug discovery," said Jason Reed of UCLA's Department of Chemistry and Biochemistry and the study's lead author. "Scientists have been hampered in their efforts to unlock the secrets of gene transcription in individual cells by the minute amount of material that must be analyzed. Nanotechnology allows us to push down to the level of individual transcript molecules."

"We are likely to see more of these kinds of highly multi-disciplinary research aimed at single molecule sequencing, genomics, epigenomic, and proteomic analysis in the future," added Bud Mishra, a professor of Computer Science, Mathematics, and Cell Biology from NYU's Courant Institute and School of Medicine. "The most exciting aspect of this approach is that as we understand how to intelligently combine various components of genomics, robotics, informatics, and nanotechnology—the so-called GRIN technology—the resulting systems will become simple, inexpensive, and commonplace."

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: Expression Nanotechnology examine

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>