Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Linheng Li Lab documents the development of cancer stem cells

24.01.2007
Xi He, M.D., Research Specialist II, and Linheng Li, Ph.D., Associate Investigator, are the first and last authors, respectively, on a new publication that clarifies how normal stem cells become cancer stem cells and how cancer stem cells can cause the formation of tumors.

The paper, "PTEN-deficient intestinal stem cells initiate intestinal polyposis" was posted to the Nature Genetics Web site on January 21.

The theory that cancer stem cells initiate and drive cancer cell growth has been gaining popularity in both clinical and basic research. Recent studies have identified cancer stem cells and shown that they may cause tumors when transplanted into a secondary host. Until now, however, little was known about the process by which mutations in a stem cell result in primary tumor initiation.

The Li Lab team studied the intestinal system in mice in which one of the human tumor suppressor genes, PTEN, had been deleted. They found that the PTEN/Akt pathway likely regulates stem cell activation by helping control nuclear localization of beta-catenin, the Wnt pathway effector, through phosphorylation of beta-catenin -- including Serine552.

"We found that a loss of PTEN in intestinal epithelial cells accompanied by a loss of PTEN in stromal cells can lead to changes that may increase the number of stem cells and change their position or location," said Dr. Li. "These changes result in crypt fission and budding and can lead to intestinal polyposis and uncontrolled tumor growth."

"All of us were very excited to be part of these efforts to reveal basic features of cancer stem cells," said Dr. He. "What we learned -- that cancer stem cells are a rare population in the tumor mass; that they are slow cycling but more active than normal stem cells; and that cancer stem cells and stromal insertions initiate the process of primary tumorigenesis -- will be influential in our future work."

"Findings from the Li Lab create opportunities to further characterize cancer stem cells and to obtain their molecular signature -- providing important insight into targeting these cells," said Robb Krumlauf, Ph.D., Scientific Director. "This is a fascinating new area of cancer research, and Linheng Li and his colleagues will continue to make important contributions."

Marie Jennings | EurekAlert!
Further information:
http://www.stowers-institute.org

Further reports about: Cancer intestinal specimen processing stem cells

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>