Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research to spotlight carbon monoxide benefits

23.01.2007
Scientists at the University of York have won a grant of £110,000 to investigate potential uses of carbon monoxide in treating disease.

Dr Jason Lynam and Dr Ian Fairlamb, of the University’s Department of Chemistry, have been awarded the funding by the Leverhulme Trust for a three-year study into the use of metal compounds for the controlled release of carbon monoxide into the bloodstream.

Carbon monoxide is an anti-inflammatory, and they want to explore its potential in treating high blood pressure, heart disease and possibly cancer. The project builds on a study conducted by Roberto Motterlini (Northwick Park Hospital in London) and Professor Brian Mann (University of Sheffield), and preliminary studies conducted in York, supported by funds from the University and Engineering and Physical Sciences Research Council (EPSRC).

Dr Fairlamb said: “You can use certain carbon monoxide molecules to elicit a whole range of biological effects. Carbon monoxide causes vasorelaxation and is produced naturally as a result of the breakdown of haemoglobin. This can be seen in the healing process of a bruise, where various colour changes indicate the degradation of haemoglobin and release of carbon monoxide. The slow release of carbon monoxide reduces blood pressure for someone who has angina, for instance.

... more about:
»Carbon »carbon monoxide »monoxide

“This work is very much in its infancy. We became involved because some of our organometallic compounds, which carry carbon monoxide, were showing potential to release carbon monoxide slowly in a controlled manner. They degrade to give benign non-toxic products which do not target immune response.”

Dr Lynam added: “We don’t want to administer carbon monoxide in its normal toxic gaseous form; rather we want to develop molecules that will release it in a sort of slow trickle feed. We aim to make tuneable compounds which allow you to alter the rate at which carbon monoxide is released, which could be important in different bioapplications.

“We are adopting a complementary approach to the design of these molecules using the natural interface between organic and inorganic chemistry.”

The project will examine the physical and electronic characteristics of potentially suitable compounds and identify those which are absorbed best by the body with the aim of starting clinical studies in three years’ time.

David Garner | alfa
Further information:
http://www.york.ac.uk/depts/chem/
http://www.york.ac.uk/admin/presspr/pressreleases/carbonmonoxideresearch.htm
http://www.leverhulme.ac.uk

Further reports about: Carbon carbon monoxide monoxide

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>