Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First familial pancreatic cancer gene identified

12.12.2006
Pancreatic cancer is relatively rare but deadly; most patients die within a year of diagnosis, and it is the fourth leading cause of cancer deaths in the US. At least 10% of pancreatic cancers are thought to be familial, i.e., caused by inherited genetic mutations.

The responsible genes have so far remained elusive, but one of the research teams that had been on a pancreatic cancer gene hunt for years now reports success: Teri Brentnall (University of Washington), David Whitcomb (University of Pittsburgh), and colleagues publish the identification of the palladin gene as the one mutated in a large family they had been studying for a while.

Family X, as it is referred to, has 18 members from 4 generations who had either pancreatic cancer or precancerous lesions of the pancreas. Tracing the DNA segments that are shared by these patients but not present in the healthy family members, the researchers had previously mapped the gene to a relatively small region of chromosome 4, which contains 243 known genes. They then made a gene chip that can measure expression levels of these 243 candidate genes and compared normal pancreas tissue with cancerous pancreas (both from a Family X member and from unrelated patients with pancreatic cancer).

Palladin, one of the 243 genes, turned out to be abnormally highly expressed in both the Family X tissue and the sporadic cancers. Named after the 16th century Italian architect Palladio, palladin codes for a component of the cytoskeleton (the scaffold that helps to control cell shape and motility). Next, the researchers quantified the expression of palladin RNA in an independent set of normal and cancerous pancreatic samples, and in precancerous pancreatic tissue taken from family X members. This analysis indicated that palladin was overexpressed early in sporadic and inherited pancreatic cancer development. Sequencing of the palladin gene then uncovered a mutation in palladin that was present in Family X members with pancreatic cancer or precancerous lesions but not in unaffected members. Finally, the researchers showed that the introduction of mutated palladin into a human cell line growing in the laboratory increased its migration rate and disrupted its cytoskeleton (both features typical of cancer cells).

... more about:
»palladin »pancreatic cancer

These results leave little doubt that mutated palladin is involved in the development of pancreatic cancer in Family X. Moreover, they suggest that overexpression of palladin is also associated with and possibly responsible for a sizeable proportion of sporadic pancreatic cancers. The identification of palladin as a “pancreatic cancer gene” provides researchers with a molecular entry point into the cellular processes underlying this cancer and will hopefully help to improve diagnosis and development of new treatments for this deadly disease.

Andrew Hyde | alfa
Further information:
http://www.plosmedicine.org/

Further reports about: palladin pancreatic cancer

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>