Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscale microscope sheds first light on gene repair

14.11.2006
Proteins called H2AX act as "first aid" to DNA, among other roles. For the first time, scientists using the world's most powerful light microscope (the only one of its kind in the Americas) have seen how H2AX is distributed in the cell nucleus: in clusters, directing the first aid/repair after DNA injuries to the region where it is really needed.

Many biological processes lie out of the visual reach of scientists. The benefits of high-resolution electron microscopy are often offset by disruptive sample preparation requirements. Light microscopy allows easier sample prep and observations of living cells, but it has limited resolution. By manipulating how light waves behave, however, biophysicists are expanding the limits of light microscopy, and one of the latest advances--the 4Pi microscope--provides never-before-seen views of cellular components, including structures within the nucleus.

In a paper published in the Proceedings of the National Academy of Sciences, Joerg Bewersdorf of the Institute for Molecular Biophysics at The Jackson Laboratory, with collaborators Brian Bennett of the UMass Medical School and Leica Microsystems and Kendall Knight of the UMass Medical School, used the 4Pi microscope to examine the cellular response to a type of severe damage to the genetic material, DNA double-strand breaks. Such breaks provoke a rapid and highly coordinated series of events to identify and repair the damage. The response is critical, and there is an increased risk for cancer, developmental abnormalities and immunological problems when components of the repair processes are defective.

Traditional microbiological and genetics techniques can shed light on the molecular pathways of repair, but they don't address the astonishingly complex three-dimensional structure of the genetic material in the nucleus. 4Pi microscopy allows researchers to actually see the response in three dimensions, at resolutions down to 100 nm. Therefore, the role of the physical structures in various processes within the nucleus can now be visualized.

... more about:
»4Pi »Bewersdorf »DNA »H2AX »Microscopy »Nucleus »clusters

"The general application of these methods will provide unprecedented insights into cellular molecular events," said Bewersdorf. "This study represents a significant advance in our ability to visualize and quantify nuclear proteins in 3D."

Bewersdorf, Bennett and Knight examined a protein called H2AX, a kind of histone. Histones are structural proteins that act as spools around which DNA is wound, and they can also play roles in gene regulation and gene repair. H2AX is an early responder to DNA damage, and its change to what is known as gamma-H2AX is important for the coordination of signaling and repair activities. But it had not been known how H2AX is distributed throughout the nucleus or why its conversion to gamma-H2AX is limited to within a short distance of a break site. By using selective staining techniques and 4Pi visualization, Bewersdorf and colleagues determined that H2AX is distributed in distinct clusters uniformly throughout the nucleus and that the structure of these clusters may determine the boundaries of where gamma-H2AX spreads in response to a break.

"The clusters may provide a platform for the immediate and robust response observed following DNA damage," said Bewersdorf. "Moving forward, we will analyze the localization of the H2AX clusters relative to other nuclear components."

Joyce Peterson | EurekAlert!
Further information:
http://www.jax.org

Further reports about: 4Pi Bewersdorf DNA H2AX Microscopy Nucleus clusters

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>