Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists: New phylum sheds light on ancestor of animals, humans

06.11.2006
Genetic analysis of an obscure, worm-like creature retrieved from the depths of the North Atlantic has led to the discovery of a new phylum, a rare event in an era when most organisms have already been grouped into major evolutionary categories.

The analysis also appears to shed light on the ancestor of chordates, the backboned animals that include human beings and two small invertebrate groups closely related to one another: lancelets and tunicates.

"It's a tremendous surprise that this mysterious creature from the ocean will help us understand our distant past," said Leonid Moroz, a professor of neuroscience and zoology at UF's Whitney Laboratory for Marine Bioscience near St. Augustine and one of the researchers who participated in the discovery.

Moroz and 13 other scientists report their findings today in the journal Nature.

... more about:
»Moroz »Xenoturbella »ancestor »organism »phylum

Scientists have long been puzzled by the half-inch-long creature known by its scientific name of Xenoturbella and first retrieved from the Baltic Sea more than 50 years ago. Early genetic research identified it as a type of mollusk. But then scientists discovered the mollusk-like DNA actually resulted not from the creature itself, but from its close association to clams and likely habit of eating mollusk eggs, Moroz said. The Xenoturbella does not seem to have a brain, gut or gonads, making it unique among living animals.

More precise genomic sequencing at the Whitney Lab – where Moroz and his collaborators identified about 1,300 genes including mitochondrial genes – helped to reveal a surprise: Xenoturbella belongs to its own phylum, a broad class of organisms lying just below kingdom in taxonomic classification. It is one of only about 32 such phyla in the animal kingdom. "During the last 50 to 60 years, only a few new phyla have been established," Moroz said.

Perhaps more significant, the analysis of Xenoturbella seems to confirm that human beings and other chordates share a common ancestor, a first in science. Its extreme characteristics suggest that this common ancestor – one the creature shares with its sister phyla, echinoderms and hemichordates, as well as chordates -- did not have a brain or central nervous system.

"It is a basal organism, which by chance preserved the basal characteristics present in our common ancestor," Moroz said. "This shows that our common ancestor doesn't have a brain but rather a diffuse neural system in the animal's surface."

A reconstructed genetic record reported in the Nature article also implies that the brain might have been independently evolved more than twice in different animal lineages, Moroz said. This conclusion sharply contrasts the widely accepted view that the centralized brain has a single origin, Moroz noted.

Moroz added that the project is an example of interdisciplinary research involving scientists from three different countries, one that also integrates classical marine biology with modern genomic techniques.

Leonid Moroz | EurekAlert!
Further information:
http://www.ufl.edu

Further reports about: Moroz Xenoturbella ancestor organism phylum

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>