Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists: New phylum sheds light on ancestor of animals, humans

06.11.2006
Genetic analysis of an obscure, worm-like creature retrieved from the depths of the North Atlantic has led to the discovery of a new phylum, a rare event in an era when most organisms have already been grouped into major evolutionary categories.

The analysis also appears to shed light on the ancestor of chordates, the backboned animals that include human beings and two small invertebrate groups closely related to one another: lancelets and tunicates.

"It's a tremendous surprise that this mysterious creature from the ocean will help us understand our distant past," said Leonid Moroz, a professor of neuroscience and zoology at UF's Whitney Laboratory for Marine Bioscience near St. Augustine and one of the researchers who participated in the discovery.

Moroz and 13 other scientists report their findings today in the journal Nature.

... more about:
»Moroz »Xenoturbella »ancestor »organism »phylum

Scientists have long been puzzled by the half-inch-long creature known by its scientific name of Xenoturbella and first retrieved from the Baltic Sea more than 50 years ago. Early genetic research identified it as a type of mollusk. But then scientists discovered the mollusk-like DNA actually resulted not from the creature itself, but from its close association to clams and likely habit of eating mollusk eggs, Moroz said. The Xenoturbella does not seem to have a brain, gut or gonads, making it unique among living animals.

More precise genomic sequencing at the Whitney Lab – where Moroz and his collaborators identified about 1,300 genes including mitochondrial genes – helped to reveal a surprise: Xenoturbella belongs to its own phylum, a broad class of organisms lying just below kingdom in taxonomic classification. It is one of only about 32 such phyla in the animal kingdom. "During the last 50 to 60 years, only a few new phyla have been established," Moroz said.

Perhaps more significant, the analysis of Xenoturbella seems to confirm that human beings and other chordates share a common ancestor, a first in science. Its extreme characteristics suggest that this common ancestor – one the creature shares with its sister phyla, echinoderms and hemichordates, as well as chordates -- did not have a brain or central nervous system.

"It is a basal organism, which by chance preserved the basal characteristics present in our common ancestor," Moroz said. "This shows that our common ancestor doesn't have a brain but rather a diffuse neural system in the animal's surface."

A reconstructed genetic record reported in the Nature article also implies that the brain might have been independently evolved more than twice in different animal lineages, Moroz said. This conclusion sharply contrasts the widely accepted view that the centralized brain has a single origin, Moroz noted.

Moroz added that the project is an example of interdisciplinary research involving scientists from three different countries, one that also integrates classical marine biology with modern genomic techniques.

Leonid Moroz | EurekAlert!
Further information:
http://www.ufl.edu

Further reports about: Moroz Xenoturbella ancestor organism phylum

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>