Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twisted Molecule

27.10.2006
Large and folded like a protein—but completely synthetic

The physiological functions of proteins depend on their folding into a particular spatial structure (tertiary structure): enzymes and their substrates must fit together like the proverbial lock and key. It has recently been discovered that not only large biomolecules are capable of stable, defined folding; synthetic molecules can do it too. Called foldamers, these molecules can even imitate the biological functions of the proteins they are modeled after. However, until recently their size and complexity was strictly limited. French researchers have now produced an intricately folded molecule exclusively from manmade components. The dimensions of this foldamer correspond to those of the tertiary structures of smaller proteins.

The team led by Ivan Huc did not want to base the design of their foldamer on the structure of proteins, because the synthesis of large chains from small individual building blocks is difficult. The alternative was to use branched structures. They did adopt one important structural element from proteins: the helix. The researchers hooked eight quinoline units (nitrogen-containing aromatic six-membered rings with a shared edge) together into a chain. This type of octamer twists itself into a helix. The researchers then bridged two such octamers together with a special branching link. This linker inserts so well into the two octamers that a continuous, stable helix is formed. The branching linker can then be used to hook two such helical structures together side by side. Once linked, the two helices do not lie in parallel, but rather at right angles to each other.

Helices can be twisted to the left or the right. In peptides, the direction of the helix is uniquely defined by the spatial structure of the individual building blocks. In the synthesis of the quadruple-octamers, however, an equal number of right- and left-handed helices are formed. The preferences demonstrated by the helices on pairing are determined by the solvent: In aromatic solvents, pairing of two helices with the same direction of twist is clearly preferred (70 %), while in chlorinated hydrocarbons up to 93 % of the pairs are formed from helices with opposite directions of twist. When the solvent is changed, the helices change their directionality to match these preferences. “This proves both helices are involved in strong interactions with each other, just like a folded protein,” says Huc. “Our abiotic foldamer is the first of its kind and shows that it is possible to synthesize folded molecules that imitate the size and structural complexity of the tertiary structure of proteins, while consisting entirely of manmade building blocks.” The goal is to produce artificial structures with defined binding sites and uniquely positioned catalytic groups for controlled reactions with specific substrates.

... more about:
»Helices »Helix »Molecule »direction »foldamer

Author: Ivan Huc, Institut Européen de Chimie et Biologie, Pessac (France), http://www.iecb.u-bordeaux.fr/index.php?id=66

Title: Proteomorphous Objects from Abiotic Backbones

Angewandte Chemie International Edition, doi: 10.1002/anie.200603390

| Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.iecb.u-bordeaux.fr/index.php?id=66

Further reports about: Helices Helix Molecule direction foldamer

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>