Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twisted Molecule

27.10.2006
Large and folded like a protein—but completely synthetic

The physiological functions of proteins depend on their folding into a particular spatial structure (tertiary structure): enzymes and their substrates must fit together like the proverbial lock and key. It has recently been discovered that not only large biomolecules are capable of stable, defined folding; synthetic molecules can do it too. Called foldamers, these molecules can even imitate the biological functions of the proteins they are modeled after. However, until recently their size and complexity was strictly limited. French researchers have now produced an intricately folded molecule exclusively from manmade components. The dimensions of this foldamer correspond to those of the tertiary structures of smaller proteins.

The team led by Ivan Huc did not want to base the design of their foldamer on the structure of proteins, because the synthesis of large chains from small individual building blocks is difficult. The alternative was to use branched structures. They did adopt one important structural element from proteins: the helix. The researchers hooked eight quinoline units (nitrogen-containing aromatic six-membered rings with a shared edge) together into a chain. This type of octamer twists itself into a helix. The researchers then bridged two such octamers together with a special branching link. This linker inserts so well into the two octamers that a continuous, stable helix is formed. The branching linker can then be used to hook two such helical structures together side by side. Once linked, the two helices do not lie in parallel, but rather at right angles to each other.

Helices can be twisted to the left or the right. In peptides, the direction of the helix is uniquely defined by the spatial structure of the individual building blocks. In the synthesis of the quadruple-octamers, however, an equal number of right- and left-handed helices are formed. The preferences demonstrated by the helices on pairing are determined by the solvent: In aromatic solvents, pairing of two helices with the same direction of twist is clearly preferred (70 %), while in chlorinated hydrocarbons up to 93 % of the pairs are formed from helices with opposite directions of twist. When the solvent is changed, the helices change their directionality to match these preferences. “This proves both helices are involved in strong interactions with each other, just like a folded protein,” says Huc. “Our abiotic foldamer is the first of its kind and shows that it is possible to synthesize folded molecules that imitate the size and structural complexity of the tertiary structure of proteins, while consisting entirely of manmade building blocks.” The goal is to produce artificial structures with defined binding sites and uniquely positioned catalytic groups for controlled reactions with specific substrates.

... more about:
»Helices »Helix »Molecule »direction »foldamer

Author: Ivan Huc, Institut Européen de Chimie et Biologie, Pessac (France), http://www.iecb.u-bordeaux.fr/index.php?id=66

Title: Proteomorphous Objects from Abiotic Backbones

Angewandte Chemie International Edition, doi: 10.1002/anie.200603390

| Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.iecb.u-bordeaux.fr/index.php?id=66

Further reports about: Helices Helix Molecule direction foldamer

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>