Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twisted Molecule

27.10.2006
Large and folded like a protein—but completely synthetic

The physiological functions of proteins depend on their folding into a particular spatial structure (tertiary structure): enzymes and their substrates must fit together like the proverbial lock and key. It has recently been discovered that not only large biomolecules are capable of stable, defined folding; synthetic molecules can do it too. Called foldamers, these molecules can even imitate the biological functions of the proteins they are modeled after. However, until recently their size and complexity was strictly limited. French researchers have now produced an intricately folded molecule exclusively from manmade components. The dimensions of this foldamer correspond to those of the tertiary structures of smaller proteins.

The team led by Ivan Huc did not want to base the design of their foldamer on the structure of proteins, because the synthesis of large chains from small individual building blocks is difficult. The alternative was to use branched structures. They did adopt one important structural element from proteins: the helix. The researchers hooked eight quinoline units (nitrogen-containing aromatic six-membered rings with a shared edge) together into a chain. This type of octamer twists itself into a helix. The researchers then bridged two such octamers together with a special branching link. This linker inserts so well into the two octamers that a continuous, stable helix is formed. The branching linker can then be used to hook two such helical structures together side by side. Once linked, the two helices do not lie in parallel, but rather at right angles to each other.

Helices can be twisted to the left or the right. In peptides, the direction of the helix is uniquely defined by the spatial structure of the individual building blocks. In the synthesis of the quadruple-octamers, however, an equal number of right- and left-handed helices are formed. The preferences demonstrated by the helices on pairing are determined by the solvent: In aromatic solvents, pairing of two helices with the same direction of twist is clearly preferred (70 %), while in chlorinated hydrocarbons up to 93 % of the pairs are formed from helices with opposite directions of twist. When the solvent is changed, the helices change their directionality to match these preferences. “This proves both helices are involved in strong interactions with each other, just like a folded protein,” says Huc. “Our abiotic foldamer is the first of its kind and shows that it is possible to synthesize folded molecules that imitate the size and structural complexity of the tertiary structure of proteins, while consisting entirely of manmade building blocks.” The goal is to produce artificial structures with defined binding sites and uniquely positioned catalytic groups for controlled reactions with specific substrates.

... more about:
»Helices »Helix »Molecule »direction »foldamer

Author: Ivan Huc, Institut Européen de Chimie et Biologie, Pessac (France), http://www.iecb.u-bordeaux.fr/index.php?id=66

Title: Proteomorphous Objects from Abiotic Backbones

Angewandte Chemie International Edition, doi: 10.1002/anie.200603390

| Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.iecb.u-bordeaux.fr/index.php?id=66

Further reports about: Helices Helix Molecule direction foldamer

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>