Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M identifies cell line that is resistant to retroviruses, including HIV

19.10.2006
Researchers at the University of Minnesota have identified a protein that enables viruses such as HIV to infect cells and spread through the body.

This discovery gives drug developers a target to discover new types of drugs to stop the virus from spreading.

The research, led by Nikunj Somia, Ph.D., assistant professor of Genetics, Cell Biology and Development, will be published online this week in the Proceedings of the National Academy of Sciences, and will appear in a subsequent print edition of the journal.

HIV is a parasite that does not have enough proteins of its own to complete its life cycle. To survive, the virus needs to use proteins in the cells that it infects.

... more about:
»Cell »HIV »Somia

Currently, the drugs that are available to fight HIV act on proteins that the virus itself produces.

"The downfall of existing HIV drugs is that since the virus is constantly changing, the drugs eventually stop working, and the virus becomes drug resistant," Somia said. "We hypothesized that if we could find the proteins within the cells that HIV uses to make more copies of itself, we would find a potential new and more effective way to fight HIV."

To begin their search for these proteins, they first induced mutations in cells through chemical manipulation; this made random mutations in the DNA of the cell lines. Then they altered HIV so it contained a protein that immediately kills cells, and infected the different mutant cell lines.

The Somia laboratory found that some cell lines lived after being infected with HIV. In the cell lines that live, the HIV is able to get into the cell, but it is attacked. The cell's proteasome, a "machine" in the cell that destroys or chews up proteins, attacks the virus, preventing it from making more copies of itself.

Proteasomes are signal dependant machines in the cell, and proteins are typically "tagged" to be destroyed.

"Finding the switch that turns on the proteasome machine in cells to seek and destroy the virus could be a powerful therapeutic agent in the fight against HIV and in controlling AIDS," Somia said.

Sara E. Buss | EurekAlert!
Further information:
http://www.umn.edu

Further reports about: Cell HIV Somia

More articles from Life Sciences:

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>