Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


U of M identifies cell line that is resistant to retroviruses, including HIV

Researchers at the University of Minnesota have identified a protein that enables viruses such as HIV to infect cells and spread through the body.

This discovery gives drug developers a target to discover new types of drugs to stop the virus from spreading.

The research, led by Nikunj Somia, Ph.D., assistant professor of Genetics, Cell Biology and Development, will be published online this week in the Proceedings of the National Academy of Sciences, and will appear in a subsequent print edition of the journal.

HIV is a parasite that does not have enough proteins of its own to complete its life cycle. To survive, the virus needs to use proteins in the cells that it infects.

... more about:
»Cell »HIV »Somia

Currently, the drugs that are available to fight HIV act on proteins that the virus itself produces.

"The downfall of existing HIV drugs is that since the virus is constantly changing, the drugs eventually stop working, and the virus becomes drug resistant," Somia said. "We hypothesized that if we could find the proteins within the cells that HIV uses to make more copies of itself, we would find a potential new and more effective way to fight HIV."

To begin their search for these proteins, they first induced mutations in cells through chemical manipulation; this made random mutations in the DNA of the cell lines. Then they altered HIV so it contained a protein that immediately kills cells, and infected the different mutant cell lines.

The Somia laboratory found that some cell lines lived after being infected with HIV. In the cell lines that live, the HIV is able to get into the cell, but it is attacked. The cell's proteasome, a "machine" in the cell that destroys or chews up proteins, attacks the virus, preventing it from making more copies of itself.

Proteasomes are signal dependant machines in the cell, and proteins are typically "tagged" to be destroyed.

"Finding the switch that turns on the proteasome machine in cells to seek and destroy the virus could be a powerful therapeutic agent in the fight against HIV and in controlling AIDS," Somia said.

Sara E. Buss | EurekAlert!
Further information:

Further reports about: Cell HIV Somia

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>