Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF scientists discover evolutionary origin of fins, limbs

28.07.2006
Molecular techniques confirm fin theory

Performance on the dance floor may not always show it, but people are rarely born with two left feet. We have genes that instruct our arms and legs to grow in the right places and point in the right directions. They also provide for the spaces between our fingers and toes and every other formative detail of our limbs.

Evolutionarily speaking, the genetic instructions used to construct and position our limbs were being perfected more than half a billion years ago in fishes, not along the sides of the body where the fins that preceded human arms and legs sprouted, but at the midline that runs along the backbone and belly.

This midline -- think of the dorsal, tail and anal fins of a fish - is where the genetic template to produce fins originated, about 100 million years before paired fins evolved and about 200 million years before paired fins evolved into limbs, according to University of Florida genetics researchers. The findings, published online today in the journal Nature, also provide insight into the evolutionary history of genes involved in human birth defects.

"Given that paired fins made their evolutionary debut at a particular location on the sides of the body, intuitively one would think the genetic tools for fin development would be brought together in that place," said developmental biologist Martin Cohn, Ph.D., an associate professor with the UF departments of zoology and anatomy and cell biology and a member of the UF Genetics Institute. "We've discovered that the genetic circuitry for building limbs first appeared in an entirely different place - the midline of the animal."

The appearance of paired fins on the sides of early vertebrates was a major evolutionary innovation toward fin - and eventually limb - locomotion, Cohn said. The earliest fishes lacked paired fins, similar to the modern-day lamprey - a species of jawless fish with a dorsal fin and tail but no side fins - considered by biologists to share many features with the ancestor of all vertebrates.

"The emergence of paired appendages was a critical event in the evolution of vertebrates," Cohn said. "The fossil record provides clear evidence that the first fins evolved along the midline. The sequence of evolutionary events leading to the origin of limbs has been known for some time, but only now are we deciphering how these events occurred at a molecular genetic level."

Researchers isolated genes from the spotted catshark, a type of slow-moving shark from the eastern Atlantic Ocean. By studying the activity of a dozen genes in shark embryos, they determined shark median fin development is associated with the presence of genes such as HoxD, Fgf8 and Tbx18, which are vital in the development of human limbs.

They also used molecular markers for different cell types to determine which cells give rise to the median fins, finding that they arise from the same cells that form the vertebrae. These same genes dictate the emergence of symmetrical pairs of fins on the animal sides, showing a shared developmental mechanism in completely different locations, according to Renata Freitas and GuangJun Zhang, co-authors of the paper and graduate students in UF's zoology department.

Extending their genetic analysis to the lamprey - a living relic from the time before fish had paired fins - researchers found the same genetic cues in place.

"That we see these same mechanisms operating in lamprey fins tells us they must have been assembled in the median fins first, and later in evolution this entire genetic program was simply reutilized in a new position to build the first paired fins," Cohn said. "It tells us our own arms and legs have their evolutionary roots in the dorsal, caudal and anal fins of our fishy ancestors."

Many of these genetic mechanisms are involved in human birth defects, which provide insight into the evolutionary history of genes and their functions.

"Knowing that many of these genes are responsible for limb defects in humans is intriguing," Cohn said. "What we've done is identify where those developmental pathways originated during our evolutionary past and how they became involved in limb development."

Learning the mechanics of development enriches our understanding of evolution, according to Ann Campbell Burke, Ph.D., an associate professor of biology at Wesleyan University who was not connected with the study.

"Using modern molecular techniques, this confirms in a lovely way an idea that's been around for over 100 years about how paired fins may have evolved in the first place," Burke said. "To translate a 19th century observation about fin development into modern molecular data is a great thing for science. It has become increasingly important to understand developmental processes in our attempts to understand evolution."

John D. Pastor | EurekAlert!
Further information:
http://www.vpha.health.ufl.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>