Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pick your COX partners

09.06.2006
COX enzymes work together in ways that suggest new biological roles, drug targets

Researchers at the University of Pennsylvania School of Medicine and Queen's University, Ontario, Canada report in the online edition of Nature Medicine this week that the COX enzymes – well-known for their contrasting role in cardiovascular biology – interact physically to form a previously unrecognized biochemical partnership and function in the development of blood vessels in a mouse model. Collaborators Garret FitzGerald, MD, Director of Penn's Institute for Translational Medicine and Therapeutics, and Colin Funk from Queen's University, say that the findings suggest new biological, developmental, and therapeutic roles for COX enzymes and prompt a re-evaluation of basic assumptions about the role of COX enzymes in disease.

COX-2 is the target of the now familiar COX inhibitors Vioxx and Celebrex. COX-1, the less celebrated sister, is the target of low-dose aspirin and older drugs, such as Advil and Naprosyn, which inhibit both COX-1 and COX-2 to prevent heart disease.

Researchers have known for some time that COX-1 and COX-2 pair up to function in the body. Even though they are interlocked, only one of them is active at a time in processing their substrate, arachidonic acid – from which prostaglandins, the fatty mediators of pain, inflammation, and heart attacks – are formed. The molecular structures of COX-1 and COX-2 are remarkably similar, but a subtle variation in their structure permits the construction of drugs that are selective in their inhibition for COX -2.

For this study the researchers developed a novel genetic mouse model that mimics the physiology of COX-2 inhibition. The investigators demonstrated that the COX-1:COX-2 partnership, or heterodimer, appears to play a critical role in the transformation that occurs in the blood vessels of newly born mice, shortly after birth, namely the closing of the ductus arterious. This necessary developmental step permits newborns to function independently from their mother.

"These observations prompt us to explore new roles for the COX enzymes in biology," says FitzGerald. "Perhaps their embrace will extend to other enzymes, such as the lipoxygenases and the nitric oxide synthases, in ways that prompt us to re-evaluate basic assumptions about the role of COX enzymes in physiology and disease."

"Perhaps this combination of COX enzymes will represent a new drug target," speculates Funk. "Blocking the COX dimer may alter the pattern of usefulness and/or safety that we associate with existing non-steroidal anti-inflammatory drugs." Funk, who has collaborated with FitzGerald at Penn over the last decade on this line of research, is now the Canada Research Chair of Physiology at Queen's University, Ontario.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu/news/

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>