Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pick your COX partners

09.06.2006
COX enzymes work together in ways that suggest new biological roles, drug targets

Researchers at the University of Pennsylvania School of Medicine and Queen's University, Ontario, Canada report in the online edition of Nature Medicine this week that the COX enzymes – well-known for their contrasting role in cardiovascular biology – interact physically to form a previously unrecognized biochemical partnership and function in the development of blood vessels in a mouse model. Collaborators Garret FitzGerald, MD, Director of Penn's Institute for Translational Medicine and Therapeutics, and Colin Funk from Queen's University, say that the findings suggest new biological, developmental, and therapeutic roles for COX enzymes and prompt a re-evaluation of basic assumptions about the role of COX enzymes in disease.

COX-2 is the target of the now familiar COX inhibitors Vioxx and Celebrex. COX-1, the less celebrated sister, is the target of low-dose aspirin and older drugs, such as Advil and Naprosyn, which inhibit both COX-1 and COX-2 to prevent heart disease.

Researchers have known for some time that COX-1 and COX-2 pair up to function in the body. Even though they are interlocked, only one of them is active at a time in processing their substrate, arachidonic acid – from which prostaglandins, the fatty mediators of pain, inflammation, and heart attacks – are formed. The molecular structures of COX-1 and COX-2 are remarkably similar, but a subtle variation in their structure permits the construction of drugs that are selective in their inhibition for COX -2.

For this study the researchers developed a novel genetic mouse model that mimics the physiology of COX-2 inhibition. The investigators demonstrated that the COX-1:COX-2 partnership, or heterodimer, appears to play a critical role in the transformation that occurs in the blood vessels of newly born mice, shortly after birth, namely the closing of the ductus arterious. This necessary developmental step permits newborns to function independently from their mother.

"These observations prompt us to explore new roles for the COX enzymes in biology," says FitzGerald. "Perhaps their embrace will extend to other enzymes, such as the lipoxygenases and the nitric oxide synthases, in ways that prompt us to re-evaluate basic assumptions about the role of COX enzymes in physiology and disease."

"Perhaps this combination of COX enzymes will represent a new drug target," speculates Funk. "Blocking the COX dimer may alter the pattern of usefulness and/or safety that we associate with existing non-steroidal anti-inflammatory drugs." Funk, who has collaborated with FitzGerald at Penn over the last decade on this line of research, is now the Canada Research Chair of Physiology at Queen's University, Ontario.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu/news/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>