Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baylor Human Genome Sequencing Center marks end of sequencing effort with chromosome 3

28.04.2006
Efforts now directed a understanding genetic causes of disease

The sequencing of human chromosome 3 announced in the current issue of the journal Nature represents a milestone for the Baylor College of Medicine Human Genome Sequencing Center – the final stage of its multi-year project to sequence the human genome.

Researchers at the BCM genome sequencing center in Houston are now using the information to discover the genetic basis for human disease, said Dr. Richard Gibbs, director of the BCM center and Dr. George Weinstock, co-director.

Sequencing chromosome 3 was also an international collaboration among teams from the United States (including Baylor College of Medicine in Houston), Germany and The People’s Republic of China.

The lead author of the paper was BCM scientist Donna Muzny, but she and Dr. Steven Scherer, associate professor in the BCM Human Genome Sequencing Center, credit Dr. Huanming Yang and the Chinese sequencing group with playing a critical role in the effort. His group determined the DNA sequence of a portion of the chromosome and characterized important elements that regulate how the DNA is translated into proteins critical to the functioning of the cell.

Yang, of the Beijing Genomes Institute of the Chinese Academy of Sciences and his colleagues also played host to an international sequencing consortium strategy meeting in 2001.

"Human genome sequencing presented a unique opportunity for China to join the international community. I salute all our friends and colleagues at the collaborating institutions for their contributions to this task and for their support of free data-sharing under the spirit of the Human Genome Project that is ’owned by all, done by all and shared by all," said Yang

"This work represents many years of collaborative effort and defines human chromosome 3 using state-of-the-art sequence quality and extraordinarily detailed manual annotation," said Gibbs.

The BCM Sequencing Center produced the sequences of chromosomes 3, 12 and X – about 10 percent of the human gene. (The sequences of the other two chromosomes appeared in earlier reports in Nature.)

"Over the more than a decade that this work continued, more than 700 researchers working an equal number at collaborating institutions painstakingly determined the exact order of genetic letter sin the human genetic doe and how they spell out the genes of mankind," said Weinstock.

Sequencing chromosome 3, which contained 199 million bases (or chemicals that are the building blocks of DNA), also involved scientists from The University of Texas Health Science Center at San Antonio, the University of Washington Genome Center and the Max Planck Institute in Berlin.

Ross Tomlin | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>