Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baylor Human Genome Sequencing Center marks end of sequencing effort with chromosome 3

28.04.2006
Efforts now directed a understanding genetic causes of disease

The sequencing of human chromosome 3 announced in the current issue of the journal Nature represents a milestone for the Baylor College of Medicine Human Genome Sequencing Center – the final stage of its multi-year project to sequence the human genome.

Researchers at the BCM genome sequencing center in Houston are now using the information to discover the genetic basis for human disease, said Dr. Richard Gibbs, director of the BCM center and Dr. George Weinstock, co-director.

Sequencing chromosome 3 was also an international collaboration among teams from the United States (including Baylor College of Medicine in Houston), Germany and The People’s Republic of China.

The lead author of the paper was BCM scientist Donna Muzny, but she and Dr. Steven Scherer, associate professor in the BCM Human Genome Sequencing Center, credit Dr. Huanming Yang and the Chinese sequencing group with playing a critical role in the effort. His group determined the DNA sequence of a portion of the chromosome and characterized important elements that regulate how the DNA is translated into proteins critical to the functioning of the cell.

Yang, of the Beijing Genomes Institute of the Chinese Academy of Sciences and his colleagues also played host to an international sequencing consortium strategy meeting in 2001.

"Human genome sequencing presented a unique opportunity for China to join the international community. I salute all our friends and colleagues at the collaborating institutions for their contributions to this task and for their support of free data-sharing under the spirit of the Human Genome Project that is ’owned by all, done by all and shared by all," said Yang

"This work represents many years of collaborative effort and defines human chromosome 3 using state-of-the-art sequence quality and extraordinarily detailed manual annotation," said Gibbs.

The BCM Sequencing Center produced the sequences of chromosomes 3, 12 and X – about 10 percent of the human gene. (The sequences of the other two chromosomes appeared in earlier reports in Nature.)

"Over the more than a decade that this work continued, more than 700 researchers working an equal number at collaborating institutions painstakingly determined the exact order of genetic letter sin the human genetic doe and how they spell out the genes of mankind," said Weinstock.

Sequencing chromosome 3, which contained 199 million bases (or chemicals that are the building blocks of DNA), also involved scientists from The University of Texas Health Science Center at San Antonio, the University of Washington Genome Center and the Max Planck Institute in Berlin.

Ross Tomlin | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>