Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pores for thought

01.11.2001


Dazzling snapshots show how ions power nerve signals round the body.


Hole story: channels like this underlie all our movements and thoughts.
© Nature/Morais-Cabral et al.


The seventh seal: ions other than potassium can’t get through
© Nature/Zhou et al.



"Potassium channels underlie all our movements and thoughts," says Rod MacKinnon of Rockefeller University in New York. His team has now unravelled the molecular mechanics of these minute protein pores. Some say the work merits a Nobel Prize.

Potassium (K+) channels power the transmission of nerve signals through the body and the brain by ushering K+ ions in and out of our cells. MacKinnon and his colleagues have taken high-resolution snapshots of the channels in action, revealing how, and how fast, individual K+ ions pass through1,2. It’s a remarkable feat - the K+ channel’s aperture is more than a hundred thousand times thinner than a sheet of paper, at under six Angstroms wide.


The role of K+ channels in nerves has made them "poster children", but they are important throughout biology, says Christopher Miller, who studies ion channels at Brandeis University in Waltham, Massachusetts. They are present in the lowliest of amoebae and in the cells of the most complex brains.

The latest images of the K+ channel protein are "dazzling", says Miller. They reveal how cells exploit the positive charge of K+ ions to produce the voltage that powers nerve signals.

For MacKinnon, seeing nature’s economy of design in the finest detail is just as fascinating: "It’s beautiful in how simple it is," he says.

Channel hopping

Using a technique called X-ray crystallography to image different concentrations of K+ ions in K+ channels, MacKinnon’s team has shown the precise route that the ions take. "It’s almost like you see the ions going through the channel," says MacKinnon.

The team has found that K+ ions can occupy one of seven positions, five of which only admit K+ ions. The ions hop through the pore, skipping a position at a time as more ions push them through from behind.

Measuring electrical fluctuations across the channel, McKinnon’s team calculate how much energy the K+ ions need to hop from position to position. The channel turns out to be so well tuned to K+ ions that they need almost no energy to pass through, thereby excluding other ions.

"This explains how [the channels] can be so fast yet so selective at the same time," says Miller. How the channels shuttle only K+ ions faster than a speeding nerve impulse had baffled biologists for decades.

Hole new world

In 1999 MacKinnon received the Lasker Award in basic medical research for revealing the detailed structure of the K+ channel>3. He is now widely tipped as a future recipient of the Noble Prize. The latest work only strengthens that prediction, says Miller: "This is the kind of work that opens up a whole new world."

Its MacKinnon’s systematic approach to deciphering how the K+ channel works, as well as the channel’s scientific significance, that warrants the ultimate scientific prize, says Fred Sigworth, a molecular physiologist at Yale University School of Medicine in New Haven, Connecticut. "These latest images are only the end of a string of wonderful discoveries by Mackinnon," he says. "We’re talking about a body of work starting in the 1990s."

It’s always nice to be recognized, admits MacKinnon, but a possible Nobel Prize does not motivate his research. "I am having so much fun doing the science," he says. "Nothing can come close to the satisfaction that gives me."

In fact, having reached "a very deep level of understanding" of K+ channels, MacKinnon now intends to move on to examine how cells open and close their ion channels.

References
  1. Morais-Cabral, J. H., Zhou, Y. & MacKinnon, R. Energetic optimisation of ion conduction rate by the K+ selectivity filter. Nature, 414, 37 - 42, (2001).

  2. Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion hydration and coordination revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature, 414, 43 - 48, (2001).

  3. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science, 280, 69 - 77, (1998).


TOM CLARKE | Nature News Service
Further information:
http://www.nature.com/nsu/011101/011101-12.html
http://www.nature.com/nsu/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>