Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reversible Microlenses to Speed Chemical Detection

14.02.2006


Scientists at Georgia Tech have created technology capable of detecting trace amounts of biological or chemical agents in a matter of seconds, much faster than traditional methods, which can take hours or up to a day. The system uses reusable hydrogel microlenses so small that millions of them can fit on a one-inch-square plate. It could greatly enhance the ability of authorities responding to a biological or chemical weapons attack as well as increase the speed of medical testing. The research appears in the February 20 edition of the chemistry journal Angawandte Chemie.


"Reversible Microlenses"


On the left, a microlens is in the “on” state and ready to detect. The right shows the microlens in the “off” state after it has detected its target chemical.



The microlenses make use of the antibody-antigen binding, the same process used by the human immune system, to detect biological or chemical agents. When antibodies on the microlenses come into contact with the antigen they are set to detect, they bind, causing the lenses to swell and become less dense. By projecting an image through the tiny lenses, scientists can view this swelling as a change in the microlens’ focal length. If the projected image is normally in focus, it goes out of focus when it comes into contact with the substance.

“These are reversible, so you can use the same lenses over and over again. This is the first time someone has done this with microlenses,” said L. Andrew Lyon, associate professor in the School of Chemistry and Biochemistry at the Georgia Institute of Technology.


Lyon and colleagues tested their system on its ability to detect biotin, a B-complex vitamin. To make the two-micrometer-wide microlenses, they coated the surface of a flexible polymeric hydrogel microsphere with the antigen biotin and aminobenzophenone (ABP), a photo-cross-linking agent, which is able to chemically attach to other molecules when exposed to UV light. Adhering these microparticles on a glass substrate causes them to deform into microlenses. After binding the biotin with its antibody, researchers hit it with ultraviolet light, causing the ABP to react with the antibody, attaching it to the microlens irreversibly. The microlenses are now ready to do their job.

“When you expose the lens to a solution that contains the antigen, it will compete for the binding site on the antibody. When the antigen and antibody bind, the lens swells and become less dense, changing its focus,” said Lyon.

Once developed into a device, the microlenses’ ability to conduct rapid chemical and biological tests could lead to significant savings in healthcare costs as many blood tests could be run in a physician’s office rather than being sent to an outside lab. It could also allow authorities to rapidly detect and identify a toxic chemical in the event of a spill or terrorist attack.

Many traditional analyses using enzyme or fluorophore-labeled antibodies can take up to a day or more and require large pieces of expensive equipment. A device built with microlenses could be handheld, since standard technologies currently exist that integrate microlenses into compact optical systems.

“The beauty of this is that the microlenses are very tunable in terms of sensitivity,” said Lyon. “You can also make arrays so you can detect multiple components on one sample, allowing you to multiplex your detection. Whereas now, each separate thing that doctors look for in a blood test is a different test they have to do in the lab.”

Lyon said the next step in developing the microlens sensors is to test the technology’s performance in complex biological fluids, like blood serum.

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>