Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reversible Microlenses to Speed Chemical Detection

14.02.2006


Scientists at Georgia Tech have created technology capable of detecting trace amounts of biological or chemical agents in a matter of seconds, much faster than traditional methods, which can take hours or up to a day. The system uses reusable hydrogel microlenses so small that millions of them can fit on a one-inch-square plate. It could greatly enhance the ability of authorities responding to a biological or chemical weapons attack as well as increase the speed of medical testing. The research appears in the February 20 edition of the chemistry journal Angawandte Chemie.


"Reversible Microlenses"


On the left, a microlens is in the “on” state and ready to detect. The right shows the microlens in the “off” state after it has detected its target chemical.



The microlenses make use of the antibody-antigen binding, the same process used by the human immune system, to detect biological or chemical agents. When antibodies on the microlenses come into contact with the antigen they are set to detect, they bind, causing the lenses to swell and become less dense. By projecting an image through the tiny lenses, scientists can view this swelling as a change in the microlens’ focal length. If the projected image is normally in focus, it goes out of focus when it comes into contact with the substance.

“These are reversible, so you can use the same lenses over and over again. This is the first time someone has done this with microlenses,” said L. Andrew Lyon, associate professor in the School of Chemistry and Biochemistry at the Georgia Institute of Technology.


Lyon and colleagues tested their system on its ability to detect biotin, a B-complex vitamin. To make the two-micrometer-wide microlenses, they coated the surface of a flexible polymeric hydrogel microsphere with the antigen biotin and aminobenzophenone (ABP), a photo-cross-linking agent, which is able to chemically attach to other molecules when exposed to UV light. Adhering these microparticles on a glass substrate causes them to deform into microlenses. After binding the biotin with its antibody, researchers hit it with ultraviolet light, causing the ABP to react with the antibody, attaching it to the microlens irreversibly. The microlenses are now ready to do their job.

“When you expose the lens to a solution that contains the antigen, it will compete for the binding site on the antibody. When the antigen and antibody bind, the lens swells and become less dense, changing its focus,” said Lyon.

Once developed into a device, the microlenses’ ability to conduct rapid chemical and biological tests could lead to significant savings in healthcare costs as many blood tests could be run in a physician’s office rather than being sent to an outside lab. It could also allow authorities to rapidly detect and identify a toxic chemical in the event of a spill or terrorist attack.

Many traditional analyses using enzyme or fluorophore-labeled antibodies can take up to a day or more and require large pieces of expensive equipment. A device built with microlenses could be handheld, since standard technologies currently exist that integrate microlenses into compact optical systems.

“The beauty of this is that the microlenses are very tunable in terms of sensitivity,” said Lyon. “You can also make arrays so you can detect multiple components on one sample, allowing you to multiplex your detection. Whereas now, each separate thing that doctors look for in a blood test is a different test they have to do in the lab.”

Lyon said the next step in developing the microlens sensors is to test the technology’s performance in complex biological fluids, like blood serum.

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>