Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reversible Microlenses to Speed Chemical Detection

14.02.2006


Scientists at Georgia Tech have created technology capable of detecting trace amounts of biological or chemical agents in a matter of seconds, much faster than traditional methods, which can take hours or up to a day. The system uses reusable hydrogel microlenses so small that millions of them can fit on a one-inch-square plate. It could greatly enhance the ability of authorities responding to a biological or chemical weapons attack as well as increase the speed of medical testing. The research appears in the February 20 edition of the chemistry journal Angawandte Chemie.


"Reversible Microlenses"


On the left, a microlens is in the “on” state and ready to detect. The right shows the microlens in the “off” state after it has detected its target chemical.



The microlenses make use of the antibody-antigen binding, the same process used by the human immune system, to detect biological or chemical agents. When antibodies on the microlenses come into contact with the antigen they are set to detect, they bind, causing the lenses to swell and become less dense. By projecting an image through the tiny lenses, scientists can view this swelling as a change in the microlens’ focal length. If the projected image is normally in focus, it goes out of focus when it comes into contact with the substance.

“These are reversible, so you can use the same lenses over and over again. This is the first time someone has done this with microlenses,” said L. Andrew Lyon, associate professor in the School of Chemistry and Biochemistry at the Georgia Institute of Technology.


Lyon and colleagues tested their system on its ability to detect biotin, a B-complex vitamin. To make the two-micrometer-wide microlenses, they coated the surface of a flexible polymeric hydrogel microsphere with the antigen biotin and aminobenzophenone (ABP), a photo-cross-linking agent, which is able to chemically attach to other molecules when exposed to UV light. Adhering these microparticles on a glass substrate causes them to deform into microlenses. After binding the biotin with its antibody, researchers hit it with ultraviolet light, causing the ABP to react with the antibody, attaching it to the microlens irreversibly. The microlenses are now ready to do their job.

“When you expose the lens to a solution that contains the antigen, it will compete for the binding site on the antibody. When the antigen and antibody bind, the lens swells and become less dense, changing its focus,” said Lyon.

Once developed into a device, the microlenses’ ability to conduct rapid chemical and biological tests could lead to significant savings in healthcare costs as many blood tests could be run in a physician’s office rather than being sent to an outside lab. It could also allow authorities to rapidly detect and identify a toxic chemical in the event of a spill or terrorist attack.

Many traditional analyses using enzyme or fluorophore-labeled antibodies can take up to a day or more and require large pieces of expensive equipment. A device built with microlenses could be handheld, since standard technologies currently exist that integrate microlenses into compact optical systems.

“The beauty of this is that the microlenses are very tunable in terms of sensitivity,” said Lyon. “You can also make arrays so you can detect multiple components on one sample, allowing you to multiplex your detection. Whereas now, each separate thing that doctors look for in a blood test is a different test they have to do in the lab.”

Lyon said the next step in developing the microlens sensors is to test the technology’s performance in complex biological fluids, like blood serum.

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>