Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic misfits: South seeking bacteria in the Northern Hemisphere

23.01.2006


Magnetotactic bacteria contain chains of magnetic iron minerals that allow them to orient in the earth’s magnetic field much like living compass needles. These bacteria have long been observed to respond to high oxygen levels in the lab by swimming towards geomagnetic north in the Northern Hemisphere and geomagnetic south in the Southern Hemisphere. In either hemisphere, this behavior would also lead them downward in the water column into areas with their preferred oxygen level. But an unusual bacterium in New England has been found doing just the opposite, a magnetic misfit of sorts.

Scientists have dubbed the bacterium the barbell for its appearance. In a study reported in this week’s issue of Science, researchers from the Woods Hole Oceanographic Institution (WHOI) and Iowa State University used genetic sequencing and other laboratory techniques to identify the barbell, which was found coexisting with other previously described magnetotactic bacteria in a local marine pond in Falmouth, MA. They also found dense populations of a small, unidentified rod-shaped bacterium that showed a similar "backwards" behavior.

Magnetotactic bacteria concentrate large amounts of iron within their cells, far more than all other marine bacteria. They could play a significant role in iron cycling in stratified marine environments, particularly ponds and salt marshes.

Lead author Sheri Simmons of the Woods Hole Oceanographic Institution says magnetotactic bacteria are found throughout the world in chemically stratified marine and freshwater environments. They can reach high densities under the right conditions and will swim along the magnetic field axis and up or down in the water column to locate their preferred or ideal living conditions. If oxygen levels are too high or too low, they will seek a layer in the water column where the level is just right.



The scientists collected samples of the barbells and rods at Salt Pond, a marine pond that is seasonally stratified near the Woods Hole Oceanographic Institution on Cape Cod, Massachusetts. Using a rowboat and a new water sampler designed and built by WHOI engineers, the team collected samples at various depths in the pond in the summers of 2003, 2004 and 2005. Much to their surprise, they found high concentrations of bacteria that swim toward geomagnetic south when exposed to high levels of oxygen, the opposite of all previously described swimming behavior in magnetotactic bacteria. They also found magnetotactic bacteria with a mixture of north and south polarities.

The coexistence of magnetotactic bacteria with north and south polarity in the same environment contradicts the currently accepted model of magnetotaxis, which says that all magnetotactic bacteria in the Northern Hemisphere swim north and downward to reach their desired habitat when exposed to high-oxygen conditions.

Simmons and colleagues Dennis Bazylinski of Iowa State University and Katrina Edwards of WHOI studied the bacteria under laboratory conditions, and say the behavior of the bacteria in situ could be different from laboratory behavior. Their results, however, suggest new models are needed to explain how these magnetotactic bacteria behave in the environment.

"Only a few species of magnetotactic bacteria have been cultivated in the lab," Simmons said. "We need to develop more methods to do that since we cannot observe their behavior directly in the environment. We are also interested in how much iron these bacteria sequester in nature. What is their distribution and abundance, and how does that affect the chemistry of their environment?"

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu/science/MCG/edwards/
http://www.whoi.edu/oceanus/viewArticle.do?id=2460&archives=true&sortBy=printed
http://www.whoi.edu/oceanus/viewArticle.do?id=3807&archives=true&sortBy=printed

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>