Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic misfits: South seeking bacteria in the Northern Hemisphere

23.01.2006


Magnetotactic bacteria contain chains of magnetic iron minerals that allow them to orient in the earth’s magnetic field much like living compass needles. These bacteria have long been observed to respond to high oxygen levels in the lab by swimming towards geomagnetic north in the Northern Hemisphere and geomagnetic south in the Southern Hemisphere. In either hemisphere, this behavior would also lead them downward in the water column into areas with their preferred oxygen level. But an unusual bacterium in New England has been found doing just the opposite, a magnetic misfit of sorts.

Scientists have dubbed the bacterium the barbell for its appearance. In a study reported in this week’s issue of Science, researchers from the Woods Hole Oceanographic Institution (WHOI) and Iowa State University used genetic sequencing and other laboratory techniques to identify the barbell, which was found coexisting with other previously described magnetotactic bacteria in a local marine pond in Falmouth, MA. They also found dense populations of a small, unidentified rod-shaped bacterium that showed a similar "backwards" behavior.

Magnetotactic bacteria concentrate large amounts of iron within their cells, far more than all other marine bacteria. They could play a significant role in iron cycling in stratified marine environments, particularly ponds and salt marshes.

Lead author Sheri Simmons of the Woods Hole Oceanographic Institution says magnetotactic bacteria are found throughout the world in chemically stratified marine and freshwater environments. They can reach high densities under the right conditions and will swim along the magnetic field axis and up or down in the water column to locate their preferred or ideal living conditions. If oxygen levels are too high or too low, they will seek a layer in the water column where the level is just right.



The scientists collected samples of the barbells and rods at Salt Pond, a marine pond that is seasonally stratified near the Woods Hole Oceanographic Institution on Cape Cod, Massachusetts. Using a rowboat and a new water sampler designed and built by WHOI engineers, the team collected samples at various depths in the pond in the summers of 2003, 2004 and 2005. Much to their surprise, they found high concentrations of bacteria that swim toward geomagnetic south when exposed to high levels of oxygen, the opposite of all previously described swimming behavior in magnetotactic bacteria. They also found magnetotactic bacteria with a mixture of north and south polarities.

The coexistence of magnetotactic bacteria with north and south polarity in the same environment contradicts the currently accepted model of magnetotaxis, which says that all magnetotactic bacteria in the Northern Hemisphere swim north and downward to reach their desired habitat when exposed to high-oxygen conditions.

Simmons and colleagues Dennis Bazylinski of Iowa State University and Katrina Edwards of WHOI studied the bacteria under laboratory conditions, and say the behavior of the bacteria in situ could be different from laboratory behavior. Their results, however, suggest new models are needed to explain how these magnetotactic bacteria behave in the environment.

"Only a few species of magnetotactic bacteria have been cultivated in the lab," Simmons said. "We need to develop more methods to do that since we cannot observe their behavior directly in the environment. We are also interested in how much iron these bacteria sequester in nature. What is their distribution and abundance, and how does that affect the chemistry of their environment?"

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu/science/MCG/edwards/
http://www.whoi.edu/oceanus/viewArticle.do?id=2460&archives=true&sortBy=printed
http://www.whoi.edu/oceanus/viewArticle.do?id=3807&archives=true&sortBy=printed

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>