Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic misfits: South seeking bacteria in the Northern Hemisphere

23.01.2006


Magnetotactic bacteria contain chains of magnetic iron minerals that allow them to orient in the earth’s magnetic field much like living compass needles. These bacteria have long been observed to respond to high oxygen levels in the lab by swimming towards geomagnetic north in the Northern Hemisphere and geomagnetic south in the Southern Hemisphere. In either hemisphere, this behavior would also lead them downward in the water column into areas with their preferred oxygen level. But an unusual bacterium in New England has been found doing just the opposite, a magnetic misfit of sorts.

Scientists have dubbed the bacterium the barbell for its appearance. In a study reported in this week’s issue of Science, researchers from the Woods Hole Oceanographic Institution (WHOI) and Iowa State University used genetic sequencing and other laboratory techniques to identify the barbell, which was found coexisting with other previously described magnetotactic bacteria in a local marine pond in Falmouth, MA. They also found dense populations of a small, unidentified rod-shaped bacterium that showed a similar "backwards" behavior.

Magnetotactic bacteria concentrate large amounts of iron within their cells, far more than all other marine bacteria. They could play a significant role in iron cycling in stratified marine environments, particularly ponds and salt marshes.

Lead author Sheri Simmons of the Woods Hole Oceanographic Institution says magnetotactic bacteria are found throughout the world in chemically stratified marine and freshwater environments. They can reach high densities under the right conditions and will swim along the magnetic field axis and up or down in the water column to locate their preferred or ideal living conditions. If oxygen levels are too high or too low, they will seek a layer in the water column where the level is just right.



The scientists collected samples of the barbells and rods at Salt Pond, a marine pond that is seasonally stratified near the Woods Hole Oceanographic Institution on Cape Cod, Massachusetts. Using a rowboat and a new water sampler designed and built by WHOI engineers, the team collected samples at various depths in the pond in the summers of 2003, 2004 and 2005. Much to their surprise, they found high concentrations of bacteria that swim toward geomagnetic south when exposed to high levels of oxygen, the opposite of all previously described swimming behavior in magnetotactic bacteria. They also found magnetotactic bacteria with a mixture of north and south polarities.

The coexistence of magnetotactic bacteria with north and south polarity in the same environment contradicts the currently accepted model of magnetotaxis, which says that all magnetotactic bacteria in the Northern Hemisphere swim north and downward to reach their desired habitat when exposed to high-oxygen conditions.

Simmons and colleagues Dennis Bazylinski of Iowa State University and Katrina Edwards of WHOI studied the bacteria under laboratory conditions, and say the behavior of the bacteria in situ could be different from laboratory behavior. Their results, however, suggest new models are needed to explain how these magnetotactic bacteria behave in the environment.

"Only a few species of magnetotactic bacteria have been cultivated in the lab," Simmons said. "We need to develop more methods to do that since we cannot observe their behavior directly in the environment. We are also interested in how much iron these bacteria sequester in nature. What is their distribution and abundance, and how does that affect the chemistry of their environment?"

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu/science/MCG/edwards/
http://www.whoi.edu/oceanus/viewArticle.do?id=2460&archives=true&sortBy=printed
http://www.whoi.edu/oceanus/viewArticle.do?id=3807&archives=true&sortBy=printed

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>