Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular research suggests shift needed in how some drugs are created

05.10.2005


The first close-up look at a pro-inflammatory signaling molecule involved in immune response in mammals suggests that researchers "should rethink what they are doing" in creating drugs based on a fruit-fly model, scientists say.



Reporting in the Oct. 1 issue of the Journal of Immunology, researchers at the University of Illinois at Urbana-Champaign unveiled the crystal structure of mouse interleukin-1 receptor-associated kinase-4 (IRAK-4).

They found a distinct highly structured loop between two helices that is remarkably different from that found in Pelle, an IRAK-4-like "death-domain" protein from Drosophila melanogaster that was determined nearly a decade ago. The death domain is so-named because of a resemblance to proteins that are involved in programmed cell death.


"It has been thought in the field that a death domain is a death domain, and molecular recognition takes place in the same fashion," said lead author Michael V. Lasker, an M.D./Ph.D. student in the College of Medicine at Urbana-Champaign. "But the crystal structure of our death domain clearly shows that indeed this is not the case."

The crystal structure of IRAK-4, as was the case for Pelle, was determined by X-ray crystallography. Using this technique, X-rays are directed into molecules of IRAK-4 that have been coaxed to form crystals. The diffraction data from the experiments allow the structure to be visualized down to angstrom-level resolution (one hundred-millionth of a centimeter). The structure of IRAK-4 was determined to a resolution of 1.7 angstroms.

The molecules in question are part of innate immune systems -- an inherent immune response coded by DNA in all living things -- that are crucial for survival against pathogens such as bacteria and fungi. Deficiencies in the system or an over-active response can set the stage for various infections, septic shock and numerous autoimmune disorders.

Since researchers at the University of Texas Southwestern in Dallas and the Howard Hughes Medical Institute reported the structure of Pelle bound to the adapter molecule known as Tube, there has been an effort to target the similar IRAK-4 molecule in mammals, said Satish K. Nair, a U. of I. professor of biochemistry.

The Pelle-Tube complex plays a crucial role in the innate immune response of fruit flies to fungal infection. IRAK-4 plays a similar role in humans and animals.

The hope is that drugs can be developed to target the molecule-binding pathway, which would be beneficial for treating arthritis and reducing inflammation, said Nair, who also is a researcher in the Center for Biophysics and Computational Biology at Illinois. Signaling in the pathway uses protein molecules that contain death-domains.

"What our structure tells us is that the particular arrangement that was seen in the structure that was solved by the researchers at Dallas Southwestern cannot possibly exist in humans, because of bad steric interactions that preclude the formation of this particular complex," Nair said.

Steric interactions refer to contacts that result when two protein molecules bind with each other. Bad interactions mean that the proteins cannot line up and connect properly. A tight connection is necessary to trigger an immune response.

A mammalian counterpart for Drosophila’s Tube molecule has not been found, but Lasker and Nair theorize that adaptors that bind IRAK-4 will either bind at a different site, or the adapter molecule will have an interface that can handle IRAK-4’s larger loop.

Researchers in Nair’s lab already are looking at the complex’s structure in humans.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>