Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Strangling tumours in bid to halt cancer


It may be possible to halt cancer in its tracks by blocking a gene critical to building tumour supply lines, according to new research carried out at the University of Queensland, Australia.

Most tumours need a blood supply to grow.

Researchers at the Institute for Molecular Bioscience have found that when new blood vessels form – in developing embryos and in tumours – a gene, known as Sox18, switches on for just 48 hours.

“In adult mice, we have found that interfering with this gene reduces tumour growth by up to 80 percent,” says postdoctoral scientist Dr Neville Young.

Neville is one of thirteen early-career researchers who have presented their work to the public and media for the first time as part of the national program Fresh Science. One of the Fresh Scientists will win a trip to the UK courtesy of British Council to present their work to the Royal Institution.

“A surprisingly large number of people carry microscopic tumours inside their bodies but these cells never develop into disease.

“One of the reasons these cancerous cells do not rage out of control is that they never establish a blood supply to feed them. Those unlucky enough to develop malignant tumours often do so when cancerous cells co-opt the body’s own blood supply.”

Sox18 has an important role to play in helping specialised cells travel to the right position and then form the tubes needed for blood flow.

Dr Young says that targeting blood vessels was not a new concept in the fight against cancer, but that one of the big problems was the side effects of current treatments.

“The novel thing about targeting Sox18 is that it is only turned on in new blood vessels feeding the growing tumour,” he says. “It does not seem to affect any other blood vessels in the body. By attacking only Sox18 we might be able to stop these new vessels forming while leaving the rest of the blood supply alone.”

The next step is to test whether researchers can manufacture a drug for humans that can mimic the observed effects in mice. They also need to design a delivery system to get the drug to the growing blood vessel cells to switch Sox18 off.

The early stages of this research are already underway with preliminary results expected within two years. This is dependent on ongoing funding for this research.

Niall Byrne | alfa
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>