Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists perfect fast way to synthesize libraries of gold nanoparticles

05.09.2005


University of Oregon work appears on cover of Inorganic Chemistry



Not all libraries contain books. In chemistry, the word library is used to refer to a collection of molecules. University of Oregon chemist Jim Hutchison’s new way of rapidly generating libraries of tiny particles with great promise for research and development at the nanoscale is featured on the cover of the Sept. 5 issue of Inorganic Chemistry.

"We’ve discovered a method for generating a diverse library of functionalized gold particles quickly and easily," said Hutchison, who directs the university’s Materials Science Institute. "Basic research of this type is the key to finding out what kinds of new electronic, optical and pharmaceutical products actually will come to market."


The article describes how to synthesize the versatile particles, built with cores of 11 gold atoms, and discloses their properties. Nanomaterials and technologies are projected to become a trillion dollar industry by 2010 and affect every industrial and consumer product sector, Hutchison said.

One of the keys to understanding the size-dependent properties and applications of nanoparticles is generating libraries of particles with different sizes for physical study. Earlier this year, Hutchison’s laboratory reported success in generating a similar library of larger particles, with cores having about 100 gold atoms, in the Journal of the American Chemical Society. The 11-atom and 100-atom libraries span a size range of 0.8 to 1.5 nanometers, a range of particular interest to nanoscientists and technologists.

Hutchison co-authored the Inorganic Chemistry article with Gerd Woehrle, one of his doctoral students. Woehrle is now finishing post-doctoral work at the Max Planck Institute in Germany.

Already known as world leaders for encouraging the teaching of green chemistry principles, Hutchison and his Oregon colleagues are pioneering the field of green nanoscience. His role in laying out the conceptual template for how to design "green" or environmentally-benign nanosubstances was described in the March issue of Environmental Science & Technology.

Hutchison is a member of ONAMI, the Oregon Nanoscience and Microtechnologies Institute. The National Science Foundation, the Alfred P. Sloan Foundation and the Camille and Henry Dreyfus Foundation, Inc., have funded his research.

Melody Ward Leslie | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>