Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New chemistry method uses ’test tubes’ far smaller than the width of a hair

30.08.2005


Using a water droplet 1 trillion times smaller than a liter of club soda as a sort of nanoscale test tube, a University of Washington scientist is conducting chemical analysis and experimentation at unprecedented tiny scales.




The method captures a single cell, or even a small subcellular structure called an organelle, within a droplet. It then employs a powerful laser microscope to study the contents and examine chemical processes, and a laser beam is used to manipulate the cell or even just a few molecules, combining them with other molecules to form new substances.

This nanoscale "laboratory" is so minuscule that it covers just 1 percent of the width of a human hair, said Daniel Chiu, a UW associate chemistry professor who is developing the unique method.


"Anything you can do in the test tube we hope to be able to do in the droplet. We just don’t need a lot of cells. We don’t even need one cell, just a few molecules," Chiu said.

The new approach makes it easier to get a wide range of information about a cell. Researchers typically use microscopy to see how proteins move within a cell and collect spatial information, but that provides very little biochemical information, Chiu said. Likewise, they can use large amounts of material in a test tube to understand biochemical processes, but that doesn’t provide the fine detail of microscopy.

"The cell is very small but it is very complex," Chiu said. "It has many hundreds of thousands of proteins. It is probably the ultimate nanomachine."

The new method, employing a process called microfluidics, allows researchers to perform chemical analysis and to study structure and form at the same time.

The tiny droplet is contained in a microfluidic device, which is far too small to be seen with the naked eye and is mounted on a platform about the size of a dime so researchers can carry it from one place to another. The device has water in one channel and oil in an adjoining channel. The target – a cell, an organelle or just a few molecules – is placed at the interface between the oil and water using a laser beam, so the target is encapsulated as the water droplet is formed.

Once the droplet captures its target, it is held fast while researchers use lasers to manipulate it and conduct analysis and experimentation.

"If you have 10 molecules that you’re interested in, you can combine those with other molecules to make new molecules," Chiu said. "You can control their reactivity, move them and combine them if they are confined in a droplet. As soon as you put them in a test tube, they’re diffused and you lose the ability to see them."

Chiu presents his work Monday during a session of the American Chemical Society’s fall meeting in Washington, D.C.

The new method allows researchers to address specific biological questions that cannot be answered by testing in large quantities in the test tube, such as how organelles within a cell differ from each other, or how different proteins are expressed within the same cell, Chiu said.

"At this point it is still limited to fundamental biological studies," he said. "It provides finer, higher resolution than working with standard test tubes. There are things you cannot find out in bulk, and every cell and organelle is different."

Currently Chiu is focused on continuing development of the process, essentially creating a nanoscale test tube. But he believes the process holds great promise for future chemical and biological research.

"We’re still trying to develop the process and to understand the chemistry at this small scale, which could be very different from chemistry at the macro scale," he said.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>