Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New chemistry method uses ’test tubes’ far smaller than the width of a hair

30.08.2005


Using a water droplet 1 trillion times smaller than a liter of club soda as a sort of nanoscale test tube, a University of Washington scientist is conducting chemical analysis and experimentation at unprecedented tiny scales.




The method captures a single cell, or even a small subcellular structure called an organelle, within a droplet. It then employs a powerful laser microscope to study the contents and examine chemical processes, and a laser beam is used to manipulate the cell or even just a few molecules, combining them with other molecules to form new substances.

This nanoscale "laboratory" is so minuscule that it covers just 1 percent of the width of a human hair, said Daniel Chiu, a UW associate chemistry professor who is developing the unique method.


"Anything you can do in the test tube we hope to be able to do in the droplet. We just don’t need a lot of cells. We don’t even need one cell, just a few molecules," Chiu said.

The new approach makes it easier to get a wide range of information about a cell. Researchers typically use microscopy to see how proteins move within a cell and collect spatial information, but that provides very little biochemical information, Chiu said. Likewise, they can use large amounts of material in a test tube to understand biochemical processes, but that doesn’t provide the fine detail of microscopy.

"The cell is very small but it is very complex," Chiu said. "It has many hundreds of thousands of proteins. It is probably the ultimate nanomachine."

The new method, employing a process called microfluidics, allows researchers to perform chemical analysis and to study structure and form at the same time.

The tiny droplet is contained in a microfluidic device, which is far too small to be seen with the naked eye and is mounted on a platform about the size of a dime so researchers can carry it from one place to another. The device has water in one channel and oil in an adjoining channel. The target – a cell, an organelle or just a few molecules – is placed at the interface between the oil and water using a laser beam, so the target is encapsulated as the water droplet is formed.

Once the droplet captures its target, it is held fast while researchers use lasers to manipulate it and conduct analysis and experimentation.

"If you have 10 molecules that you’re interested in, you can combine those with other molecules to make new molecules," Chiu said. "You can control their reactivity, move them and combine them if they are confined in a droplet. As soon as you put them in a test tube, they’re diffused and you lose the ability to see them."

Chiu presents his work Monday during a session of the American Chemical Society’s fall meeting in Washington, D.C.

The new method allows researchers to address specific biological questions that cannot be answered by testing in large quantities in the test tube, such as how organelles within a cell differ from each other, or how different proteins are expressed within the same cell, Chiu said.

"At this point it is still limited to fundamental biological studies," he said. "It provides finer, higher resolution than working with standard test tubes. There are things you cannot find out in bulk, and every cell and organelle is different."

Currently Chiu is focused on continuing development of the process, essentially creating a nanoscale test tube. But he believes the process holds great promise for future chemical and biological research.

"We’re still trying to develop the process and to understand the chemistry at this small scale, which could be very different from chemistry at the macro scale," he said.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>