Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New chemistry method uses ’test tubes’ far smaller than the width of a hair

30.08.2005


Using a water droplet 1 trillion times smaller than a liter of club soda as a sort of nanoscale test tube, a University of Washington scientist is conducting chemical analysis and experimentation at unprecedented tiny scales.




The method captures a single cell, or even a small subcellular structure called an organelle, within a droplet. It then employs a powerful laser microscope to study the contents and examine chemical processes, and a laser beam is used to manipulate the cell or even just a few molecules, combining them with other molecules to form new substances.

This nanoscale "laboratory" is so minuscule that it covers just 1 percent of the width of a human hair, said Daniel Chiu, a UW associate chemistry professor who is developing the unique method.


"Anything you can do in the test tube we hope to be able to do in the droplet. We just don’t need a lot of cells. We don’t even need one cell, just a few molecules," Chiu said.

The new approach makes it easier to get a wide range of information about a cell. Researchers typically use microscopy to see how proteins move within a cell and collect spatial information, but that provides very little biochemical information, Chiu said. Likewise, they can use large amounts of material in a test tube to understand biochemical processes, but that doesn’t provide the fine detail of microscopy.

"The cell is very small but it is very complex," Chiu said. "It has many hundreds of thousands of proteins. It is probably the ultimate nanomachine."

The new method, employing a process called microfluidics, allows researchers to perform chemical analysis and to study structure and form at the same time.

The tiny droplet is contained in a microfluidic device, which is far too small to be seen with the naked eye and is mounted on a platform about the size of a dime so researchers can carry it from one place to another. The device has water in one channel and oil in an adjoining channel. The target – a cell, an organelle or just a few molecules – is placed at the interface between the oil and water using a laser beam, so the target is encapsulated as the water droplet is formed.

Once the droplet captures its target, it is held fast while researchers use lasers to manipulate it and conduct analysis and experimentation.

"If you have 10 molecules that you’re interested in, you can combine those with other molecules to make new molecules," Chiu said. "You can control their reactivity, move them and combine them if they are confined in a droplet. As soon as you put them in a test tube, they’re diffused and you lose the ability to see them."

Chiu presents his work Monday during a session of the American Chemical Society’s fall meeting in Washington, D.C.

The new method allows researchers to address specific biological questions that cannot be answered by testing in large quantities in the test tube, such as how organelles within a cell differ from each other, or how different proteins are expressed within the same cell, Chiu said.

"At this point it is still limited to fundamental biological studies," he said. "It provides finer, higher resolution than working with standard test tubes. There are things you cannot find out in bulk, and every cell and organelle is different."

Currently Chiu is focused on continuing development of the process, essentially creating a nanoscale test tube. But he believes the process holds great promise for future chemical and biological research.

"We’re still trying to develop the process and to understand the chemistry at this small scale, which could be very different from chemistry at the macro scale," he said.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>