Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Enzyme action creates protein linked to Alzheimer’s disease


Researchers at UT Southwestern Medical Center have defined a key step in the production of beta-amyloid, a short protein that is thought to be responsible for the development of Alzheimer’s disease. Understanding this step may aid in the discovery of drugs that could help block the disease from developing.

In Alzheimer’s disease, too much beta-amyloid is produced by an enzyme that has many other essential roles. As a result, simply blocking the whole enzyme knocks out many of its other functions - which is fatal to the organism.

Using cultured human and mouse cells, as well as test-tube assays, UT Southwestern researchers singled out how just one portion of the enzyme, a protein called nicastrin, is involved in the pathway that produces beta-amyloid, thereby leading to Alzheimer’s disease. They hope next to work on ways to specifically block nicastrin. The study appears in the August 12 issue of the journal Cell.

"The work provides an attractive potential strategy for developing treatment for Alzheimer’s disease," said Dr. Gang Yu, assistant professor in the Center for Basic Neuroscience and of cell biology and senior author of the study. The research uncovered an "unprecedented mechanism of biochemistry," Dr. Yu said.

Nicastrin is a large protein that is a component of an enzyme called gamma-secretase, which is lodged in the cell’s membrane. When it is at the cell surface, nicastrin sticks out into the area outside the cell. It has been thought to play a key role in the creation of a protein called amyloid-beta - the prime suspect for the damage Alzheimer’s does to the brain - but the exact mechanism was unknown.

Dr. Yu and his colleagues found that nicastrin binds to several proteins lodged in the cell’s membrane, including one called amyloid precursor protein, or APP. Nicastrin then guides membrane-bound proteins to the active area of gamma-secretase, which then splits the proteins. APP, for example, is chopped into two parts: amyloid-beta, which is then shipped to the outside of the cell, and another part that remains inside. Amyloid-beta forms the plaques seen in brains afflicted with Alzheimer’s.

"Actually, it’s quite a simple mechanism," Dr. Yu said. "Hopefully, we can screen for compounds that can block this process and find the exact pathways and how it can be regulated in Alzheimer’s disease."

Now that nicastrin’s function has been ascertained, it opens a way to block just the splitting of APP, leaving all the enzyme’s other functions intact. For instance, it may be possible to generate chemical compounds that specifically prevent nicastrin from latching on to APP. If APP doesn’t attach to nicastrin, APP remains intact and harmless. Meanwhile, nicastrin would be free to bind all the other essential proteins that it works on.

"We want to find a particular way to block the recognition of APP but not the others," Dr. Yu said.

UT Southwestern researchers in the Center for Basic Neuroscience involved in the study were Sanjiv Shah, lead author and student research assistant; Drs. Sheu-Fen Lee and Katsuhiko Tabuchi, assistant instructors; Drs. Yi-Heng Hao and Cong Yu, postdoctoral researchers; and Dr. Thomas Südhof, director of the center. Other UT Southwestern researchers were Quincey LaPlant, Medical Scientist Training Program student; Dr. Charles E. Dann III, postdoctoral researcher in biochemistry; and Dr. Haydn Ball, assistant professor of biochemistry.

The study was supported by the National Institutes of Health, the Welch Foundation, the American Health Assistance Foundation, the American Federation for Aging Research and the Alzheimer’s Association.

Aline McKenzie | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>