Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme action creates protein linked to Alzheimer’s disease

12.08.2005


Researchers at UT Southwestern Medical Center have defined a key step in the production of beta-amyloid, a short protein that is thought to be responsible for the development of Alzheimer’s disease. Understanding this step may aid in the discovery of drugs that could help block the disease from developing.



In Alzheimer’s disease, too much beta-amyloid is produced by an enzyme that has many other essential roles. As a result, simply blocking the whole enzyme knocks out many of its other functions - which is fatal to the organism.

Using cultured human and mouse cells, as well as test-tube assays, UT Southwestern researchers singled out how just one portion of the enzyme, a protein called nicastrin, is involved in the pathway that produces beta-amyloid, thereby leading to Alzheimer’s disease. They hope next to work on ways to specifically block nicastrin. The study appears in the August 12 issue of the journal Cell.


"The work provides an attractive potential strategy for developing treatment for Alzheimer’s disease," said Dr. Gang Yu, assistant professor in the Center for Basic Neuroscience and of cell biology and senior author of the study. The research uncovered an "unprecedented mechanism of biochemistry," Dr. Yu said.

Nicastrin is a large protein that is a component of an enzyme called gamma-secretase, which is lodged in the cell’s membrane. When it is at the cell surface, nicastrin sticks out into the area outside the cell. It has been thought to play a key role in the creation of a protein called amyloid-beta - the prime suspect for the damage Alzheimer’s does to the brain - but the exact mechanism was unknown.

Dr. Yu and his colleagues found that nicastrin binds to several proteins lodged in the cell’s membrane, including one called amyloid precursor protein, or APP. Nicastrin then guides membrane-bound proteins to the active area of gamma-secretase, which then splits the proteins. APP, for example, is chopped into two parts: amyloid-beta, which is then shipped to the outside of the cell, and another part that remains inside. Amyloid-beta forms the plaques seen in brains afflicted with Alzheimer’s.

"Actually, it’s quite a simple mechanism," Dr. Yu said. "Hopefully, we can screen for compounds that can block this process and find the exact pathways and how it can be regulated in Alzheimer’s disease."

Now that nicastrin’s function has been ascertained, it opens a way to block just the splitting of APP, leaving all the enzyme’s other functions intact. For instance, it may be possible to generate chemical compounds that specifically prevent nicastrin from latching on to APP. If APP doesn’t attach to nicastrin, APP remains intact and harmless. Meanwhile, nicastrin would be free to bind all the other essential proteins that it works on.

"We want to find a particular way to block the recognition of APP but not the others," Dr. Yu said.

UT Southwestern researchers in the Center for Basic Neuroscience involved in the study were Sanjiv Shah, lead author and student research assistant; Drs. Sheu-Fen Lee and Katsuhiko Tabuchi, assistant instructors; Drs. Yi-Heng Hao and Cong Yu, postdoctoral researchers; and Dr. Thomas Südhof, director of the center. Other UT Southwestern researchers were Quincey LaPlant, Medical Scientist Training Program student; Dr. Charles E. Dann III, postdoctoral researcher in biochemistry; and Dr. Haydn Ball, assistant professor of biochemistry.

The study was supported by the National Institutes of Health, the Welch Foundation, the American Health Assistance Foundation, the American Federation for Aging Research and the Alzheimer’s Association.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>