Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecular partners required for appropriate neuronal gene repression


In their efforts to understand the complex biology of life, scientists often seek to isolate individual elements of the puzzle for study, to break the problem down to a more manageable size. Single genes and molecules are closely analyzed to better understand their specific interactions with other single entities within larger systems.

Sometimes, however, this approach misses important aspects of biology that depend on higher levels of organization. Sometimes putting a few of the pieces back together again reveals new information that would otherwise remain obscured.

A new study by researchers at The Wistar Institute demonstrates this point. Aiming for insights into the intricate biochemistry governing gene regulation, the scientists investigated the activity of a recently discovered enzyme pivotally involved in this process. A report on their findings, which may have long-term implications for treating depression and other psychiatric disorders, was published online by Nature today.

The enzyme’s function is to remove methyl groups from histones to modify them in ways that trigger gene repression. Eight histones comprise a nucleosome, and long strings of nucleosomes coil in turn into chromatin, the basic material of chromosomes. In the body’s scheme for safely storing genes away until needed, DNA is tightly looped around the histones, kept secure by enzymes similar to the one studied by the Wistar team until made accessible by the activity of related enzymes responsible for gene expression.

What the scientists found was that while the enzyme was able to demethylate its target histone when the pair was in isolation, it was unable to do so when the histone was placed in the more complex and realistic setting of a nucleosome. They then coupled the enzyme with other molecules with which it is known to complex to discover that one of them enabled the enzyme to act upon the histone and is, in fact, required for the enzyme’s effectiveness in vivo.

"The real field of action for these enzymes is chromatin, not the histones," says Ramin Shiekhattar, Ph.D., an associate professor at Wistar and senior author on the Nature study. "In our experiments, the enzyme alone was active with histones, but when we tested it on chromatin, we saw something very interesting – the enzyme was completely inactive on nucleosomes. On the other hand, the complex containing the enzyme worked well. The goal then became to determine what in the complex conferred this capability on the enzyme."

The complex, known as BHC, contains five components, including the enzyme studied by Shiekhattar and his coworkers, referred to either as BHC110 or LSD1. Further experiments by the team revealed that the enzyme requires the presence of another member of the complex called CoREST to act on nucleosomes.

Intriguingly, the enzyme in question, which helps to appropriately repress neuronal genes in non-neuronal cells and tissues, fits into the same extended enzyme family that includes monoamine oxidases, psychoactive enzymes that oxidize dopamine and norepinephrin. Inhibitors of these enzymes have long been used to treat depression, certain other psychiatric and emotional disorders, and Parkinson’s disease. A clearer understanding of this particular gene-repression system might suggest new approaches to treatments for an array of psychiatric conditions.

The lead author on the Nature study is Min Gyu Lee. Christopher Wynder and Neil Cooch are coauthors. Senior author Shiekhattar is an associate professor in two programs at Wistar, the gene expression and regulation program and molecular and cellular oncogenesis program. Support for the research was provided by the National Institutes of Health.

Franklin Hoke | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>