Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Divergent mating systems and parental conflict as a barrier to hybridization in flowering plants

04.08.2005


Sexual reproduction can be thought of as a cooperative process in which two individuals come together to produce a new individual. It can also be viewed as a process in which two parties with differing interests, investment, and background interact to produce a new individual. From the former perspective, parental interests are unified (both wish to produce vigorous offspring), while the latter suggests possible conflict. This conflict can occur before or after fertilization. Before fertilization, the mother has an interest in picking the best suited father from a larger pool, while all fathers have an interest in being picked. After fertilization, fathers have an interest in maximizing maternal investment in their progeny, while mothers will have an interest in carefully partitioning resources among progeny to maximize their combined success.



A new study in the September issue of The American Naturalist argues that with increased self-fertilization, parental conflict decreases. Consequently, parents from frequently selfing groups should be competitively inferior with respect to this parental conflict. Yaniv Brandvain and David Haig examine crosses between selfing and outcrossing pairs and find that, in most cases, there are pre- and post-zygotic symptoms of outcrossers being "stronger" than selfers with regard to parental conflict. They contend that this competitive imbalance can explain a common pattern of unilateral incompatibility, in which pollen from self-incompatible populations can successfully fertilize ovules of self-compatible individuals, but the reciprocal cross fails. Since both pre- and post-zygotic consequences of this imbalanced conflict can perturb successful fertilization and development, they provide barriers to hybridization and may facilitate speciation.

Carrie Olivia Adams | EurekAlert!
Further information:
http://www.journals.uchicago.edu/AN

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>