Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amphetamines reverse Parkinson’s disease symptoms in mice

02.08.2005


Amphetamines, including the drug popularly known as Ecstasy, can reverse the symptoms of Parkinson’s disease in mice with an acute form of the condition, according to new research at Duke University Medical Center.



The researchers caution that the findings in animals do not suggest Parkinson’s disease patients should find relief by taking amphetamines, which are drugs of abuse with many dangerous side effects. The findings rather indicate that drugs with similar chemical attributes might offer useful alternatives to current therapies, the researchers said.

The new study also shows that amphetamines -- normally thought to act by increasing dopamine concentrations in the brain –- correct the behavioral abnormalities associated with Parkinson’s in mice devoid of the brain messenger. Dopamine normally acts on dopamine receptors –- protein switches on the surface of neurons -- to stimulate brain processes that affect movement, emotion, pleasure and mood.


Parkinson’s disease stems from the degeneration of neurons in a brain region that controls movement. That degeneration, in turn, leads to a shortage of the chemical messenger dopamine. The finding that amphetamines can alter movement independently of dopamine opens up new directions in the search for prospective anti-Parkinsonian drugs, the researchers said.

The researchers, led by James B. Duke professor of cell biology Marc Caron, Ph.D. and Assistant Research Professor Raul Gainetdinov, M.D., Ph.D., of Duke, made the discovery after testing the utility of more than 60 compounds for reversing Parkinson’s symptoms in a mouse model of the disease. Developed by the Duke team, the mice lack detectable brain levels of dopamine and experience essentially all the symptoms of Parkinson’s disease for several hours before recovering their normal behavior. Caron is also a researcher of the Duke Institute for Genome Sciences & Policy.

The team reports its findings in the August 2005 issue of Public Library of Science (PLoS) Biology. The research was sponsored by the National Institutes of Health and a donation from The Long Island Community Foundation, a division of The New York Community Trust.

"This model is exciting because it allows us to examine the potential contribution of systems other than dopamine to Parkinson’s disease," said Caron. "We may be able to discover avenues for treatment that had never been thought about before or that were impossible to investigate."

The new mouse model enables the researchers to acutely eliminate dopamine, exposing systems contributing to the disease that may not have been obvious before, he explained. The severity of disease symptoms in the mice also provides a very sensitive test for compounds with potential therapeutic value, the researchers said.

In the United States, at least 500,000 people suffer from Parkinson’s disease, and about 50,000 new cases are reported annually, according to the National Institute of Neurological Disorders and Stroke. These figures are expected to rise as the average age of the population increases. Symptoms of the disease include tremors, slow movement or an inability to move, rigid limbs and a shuffling gait. Progression of the disease also leads to severe impairment in cognitive function.

Dopamine replacement therapy which involves administration of the dopamine precursor, L-DOPA, remains the gold standard for Parkinson’s treatment, said Tatyana Sotnikova, Ph.D., of Duke. However, the efficacy of the therapy wanes with time, and patients often develop fluctuations in motor performance and other adverse reactions.

In the current study, the researchers treated mice unable to recycle dopamine with a drug that also prevented them from manufacturing the brain messenger. The brains of the mice therefore lack detectable levels of dopamine and the animals exhibit all the symptoms of Parkinson’s disease for up to 16 hours. Those symptoms included severely impaired movement, rigidity and tremor. When treated with L-DOPA, the symptoms disappeared as the animals resumed normal movement.

Surprisingly, the researchers reported, treating mice lacking dopamine with high doses of amphetamine derivatives – including methamphetamine and MDMA, otherwise known as Ecstasy – reversed those symptoms. Ecstasy was most effective at counteracting the manifestations of Parkinson’s symptoms in the mice, with the beneficial effects becoming more pronounced with increasing dose.

The researchers also report that low doses of amphetamines could, when combined with L-DOPA, potentiate minimally effective doses of L-DOPA in the mice. This could have important considerations in reducing some of the side effects of current therapy.

"The locomotor stimulating effect of amphetamine and its derivatives are classically thought to result from a massive flood of dopamine," said Sotnikova. "However, the mice have only a tiny fraction of dopamine, which cannot be recycled, precluding a rise in dopamine as the possible mechanism.

"Taken together, the findings indicate that Ecstasy can improve movement control independently of dopamine and, most importantly provide evidence that drug activation of other neuronal pathways may be sufficient to restore movement even in the virtual absence of dopamine neurotransmission," she added.

Amphetamines might reverse the animal’s symptoms through their effects on a different group of receptors called trace amine receptors, the researchers suggested. Recent evidence showed that amphetamines act on trace amine receptors in addition to dopamine transmission, yet little is known about their physiological role in mammals.

The current findings are particularly promising given the severity of symptoms in the mice completely lacking dopamine, said Gainetdinov. "We think that this new animal model provides a much more stringent test for potential drugs that might prove efficacious in patients with Parkinson’s disease."

Many of the previously developed animal models of Parkinson’s disease have reduced, but detectable, levels of dopamine and do not show all the characteristics of Parkinson’s disease, making studies of potential therapeutic methods in those animals less clear, Gainetdinov said. On the other hand, animals permanently lacking dopamine cannot survive, he added.

While the results are promising, the researchers cautioned, Ecstasy’s ability to stimulate movement in the mice occurred only with high doses of the drug. Such high doses might destroy nerve tissue in normal mice and in humans, who are generally more sensitive than mice to such drugs.

"Amphetamines are controversial drugs, and there’s no reason to suggest that amphetamines themselves should be used to treat Parkinson’s," Gainetdinov said. "However, the chemical structure of amphetamines may lead to new, amphetamine-like drugs, that might provide a more lasting and beneficial alternative to L-DOPA in the treatment of Parkinson’s disease."

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>