Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amphetamines reverse Parkinson’s disease symptoms in mice

02.08.2005


Amphetamines, including the drug popularly known as Ecstasy, can reverse the symptoms of Parkinson’s disease in mice with an acute form of the condition, according to new research at Duke University Medical Center.



The researchers caution that the findings in animals do not suggest Parkinson’s disease patients should find relief by taking amphetamines, which are drugs of abuse with many dangerous side effects. The findings rather indicate that drugs with similar chemical attributes might offer useful alternatives to current therapies, the researchers said.

The new study also shows that amphetamines -- normally thought to act by increasing dopamine concentrations in the brain –- correct the behavioral abnormalities associated with Parkinson’s in mice devoid of the brain messenger. Dopamine normally acts on dopamine receptors –- protein switches on the surface of neurons -- to stimulate brain processes that affect movement, emotion, pleasure and mood.


Parkinson’s disease stems from the degeneration of neurons in a brain region that controls movement. That degeneration, in turn, leads to a shortage of the chemical messenger dopamine. The finding that amphetamines can alter movement independently of dopamine opens up new directions in the search for prospective anti-Parkinsonian drugs, the researchers said.

The researchers, led by James B. Duke professor of cell biology Marc Caron, Ph.D. and Assistant Research Professor Raul Gainetdinov, M.D., Ph.D., of Duke, made the discovery after testing the utility of more than 60 compounds for reversing Parkinson’s symptoms in a mouse model of the disease. Developed by the Duke team, the mice lack detectable brain levels of dopamine and experience essentially all the symptoms of Parkinson’s disease for several hours before recovering their normal behavior. Caron is also a researcher of the Duke Institute for Genome Sciences & Policy.

The team reports its findings in the August 2005 issue of Public Library of Science (PLoS) Biology. The research was sponsored by the National Institutes of Health and a donation from The Long Island Community Foundation, a division of The New York Community Trust.

"This model is exciting because it allows us to examine the potential contribution of systems other than dopamine to Parkinson’s disease," said Caron. "We may be able to discover avenues for treatment that had never been thought about before or that were impossible to investigate."

The new mouse model enables the researchers to acutely eliminate dopamine, exposing systems contributing to the disease that may not have been obvious before, he explained. The severity of disease symptoms in the mice also provides a very sensitive test for compounds with potential therapeutic value, the researchers said.

In the United States, at least 500,000 people suffer from Parkinson’s disease, and about 50,000 new cases are reported annually, according to the National Institute of Neurological Disorders and Stroke. These figures are expected to rise as the average age of the population increases. Symptoms of the disease include tremors, slow movement or an inability to move, rigid limbs and a shuffling gait. Progression of the disease also leads to severe impairment in cognitive function.

Dopamine replacement therapy which involves administration of the dopamine precursor, L-DOPA, remains the gold standard for Parkinson’s treatment, said Tatyana Sotnikova, Ph.D., of Duke. However, the efficacy of the therapy wanes with time, and patients often develop fluctuations in motor performance and other adverse reactions.

In the current study, the researchers treated mice unable to recycle dopamine with a drug that also prevented them from manufacturing the brain messenger. The brains of the mice therefore lack detectable levels of dopamine and the animals exhibit all the symptoms of Parkinson’s disease for up to 16 hours. Those symptoms included severely impaired movement, rigidity and tremor. When treated with L-DOPA, the symptoms disappeared as the animals resumed normal movement.

Surprisingly, the researchers reported, treating mice lacking dopamine with high doses of amphetamine derivatives – including methamphetamine and MDMA, otherwise known as Ecstasy – reversed those symptoms. Ecstasy was most effective at counteracting the manifestations of Parkinson’s symptoms in the mice, with the beneficial effects becoming more pronounced with increasing dose.

The researchers also report that low doses of amphetamines could, when combined with L-DOPA, potentiate minimally effective doses of L-DOPA in the mice. This could have important considerations in reducing some of the side effects of current therapy.

"The locomotor stimulating effect of amphetamine and its derivatives are classically thought to result from a massive flood of dopamine," said Sotnikova. "However, the mice have only a tiny fraction of dopamine, which cannot be recycled, precluding a rise in dopamine as the possible mechanism.

"Taken together, the findings indicate that Ecstasy can improve movement control independently of dopamine and, most importantly provide evidence that drug activation of other neuronal pathways may be sufficient to restore movement even in the virtual absence of dopamine neurotransmission," she added.

Amphetamines might reverse the animal’s symptoms through their effects on a different group of receptors called trace amine receptors, the researchers suggested. Recent evidence showed that amphetamines act on trace amine receptors in addition to dopamine transmission, yet little is known about their physiological role in mammals.

The current findings are particularly promising given the severity of symptoms in the mice completely lacking dopamine, said Gainetdinov. "We think that this new animal model provides a much more stringent test for potential drugs that might prove efficacious in patients with Parkinson’s disease."

Many of the previously developed animal models of Parkinson’s disease have reduced, but detectable, levels of dopamine and do not show all the characteristics of Parkinson’s disease, making studies of potential therapeutic methods in those animals less clear, Gainetdinov said. On the other hand, animals permanently lacking dopamine cannot survive, he added.

While the results are promising, the researchers cautioned, Ecstasy’s ability to stimulate movement in the mice occurred only with high doses of the drug. Such high doses might destroy nerve tissue in normal mice and in humans, who are generally more sensitive than mice to such drugs.

"Amphetamines are controversial drugs, and there’s no reason to suggest that amphetamines themselves should be used to treat Parkinson’s," Gainetdinov said. "However, the chemical structure of amphetamines may lead to new, amphetamine-like drugs, that might provide a more lasting and beneficial alternative to L-DOPA in the treatment of Parkinson’s disease."

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>