Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BRCA1 tumor suppression nullified by cyclin D1 at the estrogen receptor

01.08.2005


For about a decade, scientists have recognized that many cases of hereditary breast cancer result from a mutation of a specific gene called BRCA1, which, in its normal state, helps keep tumor formation in check. About five to 10 percent of breast cancer cases are linked to genetic miscues, about half of which are linked to BRCA1.



But now scientists have discovered that a protein called cyclin D1, grossly overproduced in about half of all cases of breast cancer, can also disrupt BRCA1’s normal role as a cancer inhibitor.

The results reaffirm cyclin D1 as a candidate target for molecular therapeutic control of breast tumor development.


"We’ve previously shown that if you have a gene therapy vector that blocks cyclin D1 in breast tumors induced by ErbB2 -- a common oncogene that many women have--you can block the growth of those tumors," said Richard Pestell, M.D., Ph.D., senior author of the paper published in the August 1 issue of Cancer Research and director of the Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, D.C.

This paper, Pestell said, identifies the mechanism by which cyclin D1 nullifies the tumor suppressor activity of BRCA1.

"Cyclin D1 is a collaborative oncogene and is sufficient for the induction of breast tumorogenesis in transgenic mice," he said. "This protein blocks the functional activity of the BRCA1 tumor suppressor. The science reported in this paper describes an important oncogene/tumor suppressor interaction."

The tumor-promoting action of various oncogenic sources upregulating expression of cyclin D1 converge at the common binding site on the estrogen receptor alpha (ER alpha) that is shared by both cyclin D1 and BRCA1. This research builds on a major discovery by the laboratory by Dr. Eliot M. Rosen, a professor of oncology at Georgetown University and a co-investigator on this study, showing that BRCA1 interacts with, and inhibits the activity of ER alpha, the protein that transduces the growth signal of estrogen.

"This may help explain why the cyclin D1 gene and the BRCA1 gene are important primarily in hormone responsive cancers," Pestell said. "The interaction occurs at the level of the ER alpha hormone receptor."

Cyclin D1 is a protein produced by cells and routinely functions in events that promote cell division. In cancer, cyclin D1 is regulated and abundantly overexpressed by a number of factors that promote tumor growth, such as the oncogenes ErB2, src, and ras. In more than half of human patients with breast cancer, tumor cells produce as much as eight times the amount of cyclin D than healthy breast cells.

Cyclin D1 interferes with BRCA1 function because the two proteins both bind to the same spot on ER alpha, an important protein that governs cell proliferation properties in both healthy and cancerous cells. In healthy cells, BRCA1 binds to ER alpha to restrain and control estrogen-target genes that promote cell division. In cancer cells, however, cyclin D1 occupies the binding site on the ER alpha to promote proliferation. The abundance of cyclin D1 pre-empts BRCA1 binding to the estrogen receptor and negates the tumor suppressor role of the BRCA1 gene product.

The lead author of the Cancer Research paper is Chenguang Wang, Ph.D., assistant professor at the Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine. Wang and Pestell conducted their research in concert with Saijun Fan, Zhiping Li, Maofu Fu, Mahadev Rao, Yongxian Ma, Chris Albanese, and Eliot Rosen, from the Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, D.C.; Michael Lisanti, Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, N.Y.; Benita Katzenellenbogen, Departments of Molecular and Integrative Physiology and Cell and Structural Biology, University of Illinois and College of Medicine, Urbana, Ill.; Peter J. Kushner, Metabolic Research Unit, University of California-San Francisco School of Medicine, San Francisco, Calif.; and Barbara Weber, Department of Molecular Genetics, University of Pennsylvania, Philadelphia, Pa. The research was funded, in part, by a grant to Dr. Rosen from the Department of Defense.

Russell Vanderboom, Ph.D. | EurekAlert!
Further information:
http://www.aacr.org

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>