Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BRCA1 tumor suppression nullified by cyclin D1 at the estrogen receptor

01.08.2005


For about a decade, scientists have recognized that many cases of hereditary breast cancer result from a mutation of a specific gene called BRCA1, which, in its normal state, helps keep tumor formation in check. About five to 10 percent of breast cancer cases are linked to genetic miscues, about half of which are linked to BRCA1.



But now scientists have discovered that a protein called cyclin D1, grossly overproduced in about half of all cases of breast cancer, can also disrupt BRCA1’s normal role as a cancer inhibitor.

The results reaffirm cyclin D1 as a candidate target for molecular therapeutic control of breast tumor development.


"We’ve previously shown that if you have a gene therapy vector that blocks cyclin D1 in breast tumors induced by ErbB2 -- a common oncogene that many women have--you can block the growth of those tumors," said Richard Pestell, M.D., Ph.D., senior author of the paper published in the August 1 issue of Cancer Research and director of the Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, D.C.

This paper, Pestell said, identifies the mechanism by which cyclin D1 nullifies the tumor suppressor activity of BRCA1.

"Cyclin D1 is a collaborative oncogene and is sufficient for the induction of breast tumorogenesis in transgenic mice," he said. "This protein blocks the functional activity of the BRCA1 tumor suppressor. The science reported in this paper describes an important oncogene/tumor suppressor interaction."

The tumor-promoting action of various oncogenic sources upregulating expression of cyclin D1 converge at the common binding site on the estrogen receptor alpha (ER alpha) that is shared by both cyclin D1 and BRCA1. This research builds on a major discovery by the laboratory by Dr. Eliot M. Rosen, a professor of oncology at Georgetown University and a co-investigator on this study, showing that BRCA1 interacts with, and inhibits the activity of ER alpha, the protein that transduces the growth signal of estrogen.

"This may help explain why the cyclin D1 gene and the BRCA1 gene are important primarily in hormone responsive cancers," Pestell said. "The interaction occurs at the level of the ER alpha hormone receptor."

Cyclin D1 is a protein produced by cells and routinely functions in events that promote cell division. In cancer, cyclin D1 is regulated and abundantly overexpressed by a number of factors that promote tumor growth, such as the oncogenes ErB2, src, and ras. In more than half of human patients with breast cancer, tumor cells produce as much as eight times the amount of cyclin D than healthy breast cells.

Cyclin D1 interferes with BRCA1 function because the two proteins both bind to the same spot on ER alpha, an important protein that governs cell proliferation properties in both healthy and cancerous cells. In healthy cells, BRCA1 binds to ER alpha to restrain and control estrogen-target genes that promote cell division. In cancer cells, however, cyclin D1 occupies the binding site on the ER alpha to promote proliferation. The abundance of cyclin D1 pre-empts BRCA1 binding to the estrogen receptor and negates the tumor suppressor role of the BRCA1 gene product.

The lead author of the Cancer Research paper is Chenguang Wang, Ph.D., assistant professor at the Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine. Wang and Pestell conducted their research in concert with Saijun Fan, Zhiping Li, Maofu Fu, Mahadev Rao, Yongxian Ma, Chris Albanese, and Eliot Rosen, from the Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, D.C.; Michael Lisanti, Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, N.Y.; Benita Katzenellenbogen, Departments of Molecular and Integrative Physiology and Cell and Structural Biology, University of Illinois and College of Medicine, Urbana, Ill.; Peter J. Kushner, Metabolic Research Unit, University of California-San Francisco School of Medicine, San Francisco, Calif.; and Barbara Weber, Department of Molecular Genetics, University of Pennsylvania, Philadelphia, Pa. The research was funded, in part, by a grant to Dr. Rosen from the Department of Defense.

Russell Vanderboom, Ph.D. | EurekAlert!
Further information:
http://www.aacr.org

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>