Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BRCA1 tumor suppression nullified by cyclin D1 at the estrogen receptor

01.08.2005


For about a decade, scientists have recognized that many cases of hereditary breast cancer result from a mutation of a specific gene called BRCA1, which, in its normal state, helps keep tumor formation in check. About five to 10 percent of breast cancer cases are linked to genetic miscues, about half of which are linked to BRCA1.



But now scientists have discovered that a protein called cyclin D1, grossly overproduced in about half of all cases of breast cancer, can also disrupt BRCA1’s normal role as a cancer inhibitor.

The results reaffirm cyclin D1 as a candidate target for molecular therapeutic control of breast tumor development.


"We’ve previously shown that if you have a gene therapy vector that blocks cyclin D1 in breast tumors induced by ErbB2 -- a common oncogene that many women have--you can block the growth of those tumors," said Richard Pestell, M.D., Ph.D., senior author of the paper published in the August 1 issue of Cancer Research and director of the Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, D.C.

This paper, Pestell said, identifies the mechanism by which cyclin D1 nullifies the tumor suppressor activity of BRCA1.

"Cyclin D1 is a collaborative oncogene and is sufficient for the induction of breast tumorogenesis in transgenic mice," he said. "This protein blocks the functional activity of the BRCA1 tumor suppressor. The science reported in this paper describes an important oncogene/tumor suppressor interaction."

The tumor-promoting action of various oncogenic sources upregulating expression of cyclin D1 converge at the common binding site on the estrogen receptor alpha (ER alpha) that is shared by both cyclin D1 and BRCA1. This research builds on a major discovery by the laboratory by Dr. Eliot M. Rosen, a professor of oncology at Georgetown University and a co-investigator on this study, showing that BRCA1 interacts with, and inhibits the activity of ER alpha, the protein that transduces the growth signal of estrogen.

"This may help explain why the cyclin D1 gene and the BRCA1 gene are important primarily in hormone responsive cancers," Pestell said. "The interaction occurs at the level of the ER alpha hormone receptor."

Cyclin D1 is a protein produced by cells and routinely functions in events that promote cell division. In cancer, cyclin D1 is regulated and abundantly overexpressed by a number of factors that promote tumor growth, such as the oncogenes ErB2, src, and ras. In more than half of human patients with breast cancer, tumor cells produce as much as eight times the amount of cyclin D than healthy breast cells.

Cyclin D1 interferes with BRCA1 function because the two proteins both bind to the same spot on ER alpha, an important protein that governs cell proliferation properties in both healthy and cancerous cells. In healthy cells, BRCA1 binds to ER alpha to restrain and control estrogen-target genes that promote cell division. In cancer cells, however, cyclin D1 occupies the binding site on the ER alpha to promote proliferation. The abundance of cyclin D1 pre-empts BRCA1 binding to the estrogen receptor and negates the tumor suppressor role of the BRCA1 gene product.

The lead author of the Cancer Research paper is Chenguang Wang, Ph.D., assistant professor at the Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine. Wang and Pestell conducted their research in concert with Saijun Fan, Zhiping Li, Maofu Fu, Mahadev Rao, Yongxian Ma, Chris Albanese, and Eliot Rosen, from the Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, D.C.; Michael Lisanti, Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, N.Y.; Benita Katzenellenbogen, Departments of Molecular and Integrative Physiology and Cell and Structural Biology, University of Illinois and College of Medicine, Urbana, Ill.; Peter J. Kushner, Metabolic Research Unit, University of California-San Francisco School of Medicine, San Francisco, Calif.; and Barbara Weber, Department of Molecular Genetics, University of Pennsylvania, Philadelphia, Pa. The research was funded, in part, by a grant to Dr. Rosen from the Department of Defense.

Russell Vanderboom, Ph.D. | EurekAlert!
Further information:
http://www.aacr.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>