Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria mechanism revealed

29.07.2005


Molecular ’handshake’ of key parasite protein seen as target for drug design and vaccine development



By determining the molecular structure of a protein that enables malaria parasites to invade red blood cells, researchers have uncovered valuable clues for rational antimalarial drug design and vaccine development. The findings are reported in the July 29 issue of the journal Cell.

Malaria causes approximately 400 million clinical cases and 2 million deaths annually, with more than 80% of deaths occurring among children. The disease is caused by mosquito-borne parasites of the genus Plasmodium (primarily Plasmodium falciparum). Following the initial stages of infection, merozoite-stage parasites ("merozoites") invade red blood cells, leading to clinical symptoms and in many cases, death.


"Niraj Tolia [the first author of the study] had malaria when he was young. So when he joined my lab as a graduate student, it didn’t take long for me to convince him that this was a good project," says structural biologist Leemor Joshua-Tor of Cold Spring Harbor Laboratory, who led the research.

A major pathway through which malaria parasites invade red blood cells is the binding of a protein on the surface of merozoites called EBA-175 to a receptor protein on the surface of red blood cells called glycophorin A. Merozoites die if they do not invade red blood cells soon after their release (from liver cells) into the bloodstream. Thus, the binding of EBA-175 to glycophorin A is a prominent target for the development of therapies to control malaria.

To explore the molecular basis of the binding of EBA-175 to glycophorin A--with the rationale that such information might reveal strategies for preventing and treating malaria--the researchers used x-ray crystallography to determine the atomic structure of a key portion of the EBA-175 protein called the RII domain.

The results revealed that two molecules of RII come together in a manner resembling a handshake, and that the overall shape of such RII "dimers" resembles a donut with two holes. (Image available on request)

Next, to identify precisely which parts of the RII surface bind to glycophorin A, the researchers determined the atomic structure of RII crystallized along with sugar molecules called glycans. Previous work by a co-author of the study, Kim Lee Sim of Protein Potential LLC, established that glycans displayed on the glycophorin A receptor are required for RII binding and for the invasion of red blood cells by the malaria parasite.

The new results showed that each RII dimer binds six glycans. Interestingly, these glycans were discovered to be sandwiched between surfaces where the two RII molecules bind to each other when they form their handshake. This finding suggested that the RII handshake interaction serves to clamp the parasite protein onto the glycophorin A receptor of red blood cells. An important idea stemming from this view is that blocking the RII interaction--with drugs or vaccines--should block glycophorin A receptor binding and forestall malaria infection.

To test this idea, the researchers created altered versions of the RII protein that they predicted would block the RII handshake, glycan binding, or both. The result: All such altered versions of the RII protein failed to bind to red blood cells, confirming the idea that drugs or vaccines that block the RII interaction, glycan binding, or both might be effective therapies for malaria. (Image available on request)

"We now see precisely how a key part of a malaria parasite protein works. This enables researchers to design very specific wrenches to throw into the works. The EBA-175 protein and others related to it appear to be unique to Plasmodium, so they are excellent drug and vaccine targets," says Joshua-Tor.

Joshua-Tor, Tolia, and Sim were joined in the study by Eric Enemark of Cold Spring Harbor Laboratory.

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>