Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria mechanism revealed

29.07.2005


Molecular ’handshake’ of key parasite protein seen as target for drug design and vaccine development



By determining the molecular structure of a protein that enables malaria parasites to invade red blood cells, researchers have uncovered valuable clues for rational antimalarial drug design and vaccine development. The findings are reported in the July 29 issue of the journal Cell.

Malaria causes approximately 400 million clinical cases and 2 million deaths annually, with more than 80% of deaths occurring among children. The disease is caused by mosquito-borne parasites of the genus Plasmodium (primarily Plasmodium falciparum). Following the initial stages of infection, merozoite-stage parasites ("merozoites") invade red blood cells, leading to clinical symptoms and in many cases, death.


"Niraj Tolia [the first author of the study] had malaria when he was young. So when he joined my lab as a graduate student, it didn’t take long for me to convince him that this was a good project," says structural biologist Leemor Joshua-Tor of Cold Spring Harbor Laboratory, who led the research.

A major pathway through which malaria parasites invade red blood cells is the binding of a protein on the surface of merozoites called EBA-175 to a receptor protein on the surface of red blood cells called glycophorin A. Merozoites die if they do not invade red blood cells soon after their release (from liver cells) into the bloodstream. Thus, the binding of EBA-175 to glycophorin A is a prominent target for the development of therapies to control malaria.

To explore the molecular basis of the binding of EBA-175 to glycophorin A--with the rationale that such information might reveal strategies for preventing and treating malaria--the researchers used x-ray crystallography to determine the atomic structure of a key portion of the EBA-175 protein called the RII domain.

The results revealed that two molecules of RII come together in a manner resembling a handshake, and that the overall shape of such RII "dimers" resembles a donut with two holes. (Image available on request)

Next, to identify precisely which parts of the RII surface bind to glycophorin A, the researchers determined the atomic structure of RII crystallized along with sugar molecules called glycans. Previous work by a co-author of the study, Kim Lee Sim of Protein Potential LLC, established that glycans displayed on the glycophorin A receptor are required for RII binding and for the invasion of red blood cells by the malaria parasite.

The new results showed that each RII dimer binds six glycans. Interestingly, these glycans were discovered to be sandwiched between surfaces where the two RII molecules bind to each other when they form their handshake. This finding suggested that the RII handshake interaction serves to clamp the parasite protein onto the glycophorin A receptor of red blood cells. An important idea stemming from this view is that blocking the RII interaction--with drugs or vaccines--should block glycophorin A receptor binding and forestall malaria infection.

To test this idea, the researchers created altered versions of the RII protein that they predicted would block the RII handshake, glycan binding, or both. The result: All such altered versions of the RII protein failed to bind to red blood cells, confirming the idea that drugs or vaccines that block the RII interaction, glycan binding, or both might be effective therapies for malaria. (Image available on request)

"We now see precisely how a key part of a malaria parasite protein works. This enables researchers to design very specific wrenches to throw into the works. The EBA-175 protein and others related to it appear to be unique to Plasmodium, so they are excellent drug and vaccine targets," says Joshua-Tor.

Joshua-Tor, Tolia, and Sim were joined in the study by Eric Enemark of Cold Spring Harbor Laboratory.

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>