Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New finding may aid adult stem cell collection

27.07.2005


CINCINNATI-Cincinnati scientists have discovered how blood-regenerating stem cells move from bone marrow into the blood stream.



The finding has led to the development of a new chemical compound that can accelerate this process (called stem cell mobilization) in mice--which could eventually lead to more efficient stem cell harvesting for human use.

The researchers, from the Cincinnati Children’s Hospital Medical Center and the University of Cincinnati (UC), studied the migration of mouse stem cells to better understand how adult cells move into the bone marrow during stem cell transplants--or can be directed into the blood stream, where they can be more easily harvested for use in transplant procedures.


The team, led by Jose Cancelas, MD, PhD, and David Williams, MD, found that a group of proteins known as the RAC GTPase family plays a significant role in regulating the location and movement of stem cells in bone marrow.

Dr. Cancelas, lead author of the report, is director of research at UC’s Hoxworth Blood Center. Dr. Williams, the senior author, heads experimental hematology at Cincinnati Children’s.

The researchers discovered that by inhibiting RAC GTPase activity in mice, they were able to "instruct" stem cells to move from their home in the bone marrow and into the blood stream, where they can easily be collected. They achieved this using a drug, developed by Cincinnati Children’s faculty member Yi Zheng, PhD, known as NSC23766.

Their findings are reported in the Aug. 6 edition of the scientific journal Nature Medicine.

Scientists have long known that bone marrow stem cells regenerate blood cells. Recent research has also suggested that these cells may help repair damage in other organs, such as the heart and brain.

Injected during transplants procedures, stem cells migrate to a specific location in the bone marrow, where they reestablish the mechanism of blood formation.

"Our findings demonstrate that RAC GTPase proteins are essential for injected stem cells to migrate into the correct location in the bone marrow," said Dr. Williams.

Researching the location of and the factors involved in stem cell regeneration is important to the development of new therapeutic tools in stem cell therapy, said Dr. Cancelas, lead author of the report.

"We wanted to know why stem cells are located in specific pockets of the bone marrow," he said, "and how can they be mobilized to move into the blood stream for easier collection."

Adult stem cell transplantation, or bone marrow transplantation, is used during the treatment of cancer and genetic blood diseases, such as sickle cell anemia, to restore blood cell formation in bone marrow that has been damaged by high-dose chemotherapy or radiation therapy. It has also shown promise in animal studies for possible treatment of organ damage, such as that seen in heart disease and degenerative diseases like Parkinson’s.

During high-dose radiation therapy treatment, given to kill advanced cancer, normal stem cells found in bone marrow are also destroyed. Without a bone marrow transplant, new blood cells cannot be produced and the patient will die.

When bone marrow or adult stem cells are taken from a matching donor and injected into the patient after radiation or chemotherapy, the cells move through the recipient’s blood stream and settle in the same type of tissue they inhabited in the donor.

Although bone marrow is the best known reservoir of stem cells, only one of 100,000 cells in the marrow is a stem cell. There are also small reservoirs of stem cells in other major organs, such as brain, muscle, heart and other tissue.

The research team also included Andrew Lee, Rethinasamy Prabhakar, PhD, and Keith Stringer, MD, PhD. Their work was supported by grants from the National Institutes of Health and the National Blood Foundation.

More than 40,000 bone marrow transplants are performed each year worldwide, about 25,000 using the recipient’s own tissue, and 15,000 using tissue from matching donors.

Sheryl Hilton | EurekAlert!
Further information:
http://www.uc.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>