Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New finding may aid adult stem cell collection

27.07.2005


CINCINNATI-Cincinnati scientists have discovered how blood-regenerating stem cells move from bone marrow into the blood stream.



The finding has led to the development of a new chemical compound that can accelerate this process (called stem cell mobilization) in mice--which could eventually lead to more efficient stem cell harvesting for human use.

The researchers, from the Cincinnati Children’s Hospital Medical Center and the University of Cincinnati (UC), studied the migration of mouse stem cells to better understand how adult cells move into the bone marrow during stem cell transplants--or can be directed into the blood stream, where they can be more easily harvested for use in transplant procedures.


The team, led by Jose Cancelas, MD, PhD, and David Williams, MD, found that a group of proteins known as the RAC GTPase family plays a significant role in regulating the location and movement of stem cells in bone marrow.

Dr. Cancelas, lead author of the report, is director of research at UC’s Hoxworth Blood Center. Dr. Williams, the senior author, heads experimental hematology at Cincinnati Children’s.

The researchers discovered that by inhibiting RAC GTPase activity in mice, they were able to "instruct" stem cells to move from their home in the bone marrow and into the blood stream, where they can easily be collected. They achieved this using a drug, developed by Cincinnati Children’s faculty member Yi Zheng, PhD, known as NSC23766.

Their findings are reported in the Aug. 6 edition of the scientific journal Nature Medicine.

Scientists have long known that bone marrow stem cells regenerate blood cells. Recent research has also suggested that these cells may help repair damage in other organs, such as the heart and brain.

Injected during transplants procedures, stem cells migrate to a specific location in the bone marrow, where they reestablish the mechanism of blood formation.

"Our findings demonstrate that RAC GTPase proteins are essential for injected stem cells to migrate into the correct location in the bone marrow," said Dr. Williams.

Researching the location of and the factors involved in stem cell regeneration is important to the development of new therapeutic tools in stem cell therapy, said Dr. Cancelas, lead author of the report.

"We wanted to know why stem cells are located in specific pockets of the bone marrow," he said, "and how can they be mobilized to move into the blood stream for easier collection."

Adult stem cell transplantation, or bone marrow transplantation, is used during the treatment of cancer and genetic blood diseases, such as sickle cell anemia, to restore blood cell formation in bone marrow that has been damaged by high-dose chemotherapy or radiation therapy. It has also shown promise in animal studies for possible treatment of organ damage, such as that seen in heart disease and degenerative diseases like Parkinson’s.

During high-dose radiation therapy treatment, given to kill advanced cancer, normal stem cells found in bone marrow are also destroyed. Without a bone marrow transplant, new blood cells cannot be produced and the patient will die.

When bone marrow or adult stem cells are taken from a matching donor and injected into the patient after radiation or chemotherapy, the cells move through the recipient’s blood stream and settle in the same type of tissue they inhabited in the donor.

Although bone marrow is the best known reservoir of stem cells, only one of 100,000 cells in the marrow is a stem cell. There are also small reservoirs of stem cells in other major organs, such as brain, muscle, heart and other tissue.

The research team also included Andrew Lee, Rethinasamy Prabhakar, PhD, and Keith Stringer, MD, PhD. Their work was supported by grants from the National Institutes of Health and the National Blood Foundation.

More than 40,000 bone marrow transplants are performed each year worldwide, about 25,000 using the recipient’s own tissue, and 15,000 using tissue from matching donors.

Sheryl Hilton | EurekAlert!
Further information:
http://www.uc.edu

More articles from Life Sciences:

nachricht Plankton swim against the current
12.12.2017 | Schweizerischer Nationalfonds SNF

nachricht To differentiate or not to differentiate?
12.12.2017 | Max-Planck-Institut für Biologie des Alterns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>