Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research bolsters highly targeted gastro-intestinal cancer treatment

06.07.2005


Gastro-Intestinal Stroma Tumor (GIST) is a rare form of cancer of the stomach or small intestine. Up to now, only one effective treatment has existed for GIST: the use of Glivec. However, over time, this remedy becomes ineffective for a large percentage of the patients. Along with colleagues in Leuven, the research group of Peter Marynen of the Flanders Interuniversity Institute for Biotechnology (VIB), connected to the Catholic University of Leuven, has uncovered the process underlying the frequent ineffectiveness of Glivec. In addition, the researchers have shown that PKC412 - an experimental drug currently in the second phase of clinical research - can be effective in helping these patients once again. This possible alternative to Glivec, and the genetic understanding of the development of resistance to Glivec, should make it possible to prescribe a new highly targeted therapy for patients in the future.



GIST: a specific form of gastro-intestinal cancer

GIST is a rare form of gastro-intestinal cancer that strikes some 175 Belgians each year. Often, by the time it is discovered, there are already metastases in other organs, which make it impossible to remove the GIST tumors surgically. Furthermore, the other traditional cancer treatments - chemotherapy and radiation treatment - produce little result. Since 2002, there has been an effective treatment for GIST: Glivec. And up to now, this has been the only remedy for treating GIST effectively.


Why look for an alternative for Glivec?

To arrive at a definite diagnosis for GIST, a biopsy is needed to verify the presence of specific receptor proteins on the GIST cells. Cells contain certain receptors to which growth factors can bind, but GIST cells contain a defect in one of these receptors, the KIT receptor. The defective KIT receptor gives a continuous signal to the cancer cells to multiply, enabling the cancer cells to grow irrespective of the presence of the growth factors. However, the drug Glivec works by also binding to this KIT receptor and thus disabling its activity. As a consequence, the GIST cells stop growing and even die off. In contrast to chemotherapy or radiation treatment, Glivec is a highly targeted drug without many side effects. The problem is that often the tumor cells adapt themselves so that Glivec no longer has an effect on them. To find a solution for this problem is a great challenge in the treatment of GIST.

KIT adapts and resists

Peter Marynen, in collaboration with other Leuven researchers, set out to discover the mechanisms behind the origin of this tumor cell resistance to Glivec. By investigating tumor tissue from 26 GIST patients, their research revealed that, in most cases, KIT’s reactivation was a crucial factor in this process. Usually, the reactivation was the consequence of an additional alteration in KIT itself, but sometimes it was brought about by a change in another protein. This last finding is a new piece of information in cancer research.

PKC412: a new solution appears

The researchers in Leuven investigated whether an experimental drug, PKC412, could counteract the reactivation of KIT. They have demonstrated that PKC412 is indeed able to combat resistant tumors. So, once it’s on the market, this new medicine can be a good alternative for Glivec, or it can be used in combination with Glivec. At the moment, PKC412 is in Phase II clinical research on leukemia and other cancer patients. If all goes well, it is expected to come onto the market within a few years.

Research funding

This research was made possible through funding from VIB, the Catholic University of Leuven, the Belgian Federation Against Cancer, and the Flanders Research Fund for Scientific Research.

Sooike Stoops | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>