Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research bolsters highly targeted gastro-intestinal cancer treatment

06.07.2005


Gastro-Intestinal Stroma Tumor (GIST) is a rare form of cancer of the stomach or small intestine. Up to now, only one effective treatment has existed for GIST: the use of Glivec. However, over time, this remedy becomes ineffective for a large percentage of the patients. Along with colleagues in Leuven, the research group of Peter Marynen of the Flanders Interuniversity Institute for Biotechnology (VIB), connected to the Catholic University of Leuven, has uncovered the process underlying the frequent ineffectiveness of Glivec. In addition, the researchers have shown that PKC412 - an experimental drug currently in the second phase of clinical research - can be effective in helping these patients once again. This possible alternative to Glivec, and the genetic understanding of the development of resistance to Glivec, should make it possible to prescribe a new highly targeted therapy for patients in the future.



GIST: a specific form of gastro-intestinal cancer

GIST is a rare form of gastro-intestinal cancer that strikes some 175 Belgians each year. Often, by the time it is discovered, there are already metastases in other organs, which make it impossible to remove the GIST tumors surgically. Furthermore, the other traditional cancer treatments - chemotherapy and radiation treatment - produce little result. Since 2002, there has been an effective treatment for GIST: Glivec. And up to now, this has been the only remedy for treating GIST effectively.


Why look for an alternative for Glivec?

To arrive at a definite diagnosis for GIST, a biopsy is needed to verify the presence of specific receptor proteins on the GIST cells. Cells contain certain receptors to which growth factors can bind, but GIST cells contain a defect in one of these receptors, the KIT receptor. The defective KIT receptor gives a continuous signal to the cancer cells to multiply, enabling the cancer cells to grow irrespective of the presence of the growth factors. However, the drug Glivec works by also binding to this KIT receptor and thus disabling its activity. As a consequence, the GIST cells stop growing and even die off. In contrast to chemotherapy or radiation treatment, Glivec is a highly targeted drug without many side effects. The problem is that often the tumor cells adapt themselves so that Glivec no longer has an effect on them. To find a solution for this problem is a great challenge in the treatment of GIST.

KIT adapts and resists

Peter Marynen, in collaboration with other Leuven researchers, set out to discover the mechanisms behind the origin of this tumor cell resistance to Glivec. By investigating tumor tissue from 26 GIST patients, their research revealed that, in most cases, KIT’s reactivation was a crucial factor in this process. Usually, the reactivation was the consequence of an additional alteration in KIT itself, but sometimes it was brought about by a change in another protein. This last finding is a new piece of information in cancer research.

PKC412: a new solution appears

The researchers in Leuven investigated whether an experimental drug, PKC412, could counteract the reactivation of KIT. They have demonstrated that PKC412 is indeed able to combat resistant tumors. So, once it’s on the market, this new medicine can be a good alternative for Glivec, or it can be used in combination with Glivec. At the moment, PKC412 is in Phase II clinical research on leukemia and other cancer patients. If all goes well, it is expected to come onto the market within a few years.

Research funding

This research was made possible through funding from VIB, the Catholic University of Leuven, the Belgian Federation Against Cancer, and the Flanders Research Fund for Scientific Research.

Sooike Stoops | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>