Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary nanotechnology illuminates brain cells at work

31.05.2005


Until now it has been impossible to accurately measure the levels of important chemicals in living brain cells in real time and at the level of a single cell. Scientists at the Carnegie Institution’s Department of Plant Biology and Stanford University are the first to overcome this obstacle by successfully applying genetic nanotechnology using molecular sensors to view changes in brain chemical levels. The sensors alter their 3-dimensional form upon binding with the chemical, which is then visible via a process known as fluorescence resonance energy transfer, or FRET. In a new study, the nanosensors were introduced into nerve cells to measure the release of the neurotransmitter glutamate--the major brain chemical that increases nerve-cell activity in mammalian brains. It is involved in everything from learning and memory to mood and perception. Too much glutamate is believed to contribute to conditions such as Alzheimer’s and Parkinson’s disease. The research is published in the May 30-June 3 on-line early edition of the Proceedings of the National Academy of Sciences.



"The fluorescent imaging technique allows us to see living cells do their jobs live and in color," explained Sakiko Okumoto, lead author of the study at Carnegie. "Understanding when and how glutamate is produced, secreted, reabsorbed, and metabolized in individual brain cells, in real time, will help researchers better understand disease processes and construct new drugs."

"FRET is like two musical tuning forks, which have the same tone," Okumoto continued. "If you excite one, it gives a characteristic tone. If you bring the second fork close to the first one, it will also start to give you a tone even though they do not touch. This is resonance energy transfer."


FRET is used to track the form of proteins that specifically bind metabolites such as sugars and amino acids. A protein of interest is genetically fused with two differently colored tags made from variants of the jellyfish Green Fluorescent Protein (GFP). The colored tags are placed at each end of the molecule making a "biosensor." When the substance of interest binds to the sensor, the sensor backbone becomes reoriented, and the reorientation can be detected. Since light is a vibration, the same response occurs with two fluorescent dyes that have overlapping, but slightly different colors–in this case cyan and yellow versions of GFP. The cyan is excited and, if the distance between the colored proteins changes, more or less energy is transferred to the yellow protein. In this study, the cyan and yellow proteins behave as if they move away from one another when the sensor recognizes glutamate. Thus, there is more cyan and less yellow light than in the absence of glutamate. The sensors are encoded by genes and genetic ZIP codes can be used to target the sensors to any location in the cell and to its surface.

"We used a protein called ybeJ from the common bacterium E. coli. We first predicted the structure of this protein, and then placed the two fluorophores at specific positions on the binding protein," commented co-author Loren Looger. "After fusion to the fluorescent proteins, we placed the sensor on the surface of rat hippocampal cells. The hippocampus is the part of the brain that is involved with emotional reactions, and it helps store learned information in memory. When neurons are activated, they secrete glutamate, and we could see this activity under the microscope by watching the color change. We stimulated the neurons and watched them secrete glutamate in response. We also saw the removal of the glutamate as the neurons returned to normal ready to fire again."

"This is a tremendously exciting technology," remarked Wolf Frommer, leader of the FRET team at Carnegie. "I’m anxious to see what we can learn about the vast complexities of the brain over the coming years, such as the role of glial cells in the process of glutamate removal from the synaptic cleft. It’s fascinating to see a tool that we are using in plant biology open new areas in neuroscience."

Wolf Frommer | EurekAlert!
Further information:
http://www.carnegieinstitution.org

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>