Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutated gene causes serious heart disease in newborns

04.05.2005


The research group of professor Manfred Kilimann at the Department of Cell and Molecular Biology has elucidated the genetic cause of a severe heart disease in newborn children. This result will be published in the June issue of the American Journal of Human Genetics this week.



Cardiomyopathies are diseases of the heart muscle tissue and often lead to heart failure. Most of them are inborn and can be caused by gene defects (mutations) affecting various proteins needed either for the contraction or the energy supply of the heart. The subject of professor Kilimann’s research was a rare but particularly malignant form of cardiomyopathy: fatal congenital nonlysosomal heart glycogenosis (FCNHG). Children with this disease have a dramatically enlarged heart (5 times the normal weight) and arrhythmia, and die from heart failure and respiratory complications at a few weeks of age.

"Earlier biochemical research had attributed this disease to a defect in an enzyme of energy metabolism, phosphorylase kinase (Phk), but when we analyzed the Phk genes, we found them to be normal. The earlier molecular explanation of FCNHG was apparently in error. We finally had the idea to look into another gene, of AMP-activated protein kinase (PRKAG2), which is also involved in energy metabolism and was known to cause a related but much milder cardiomyopathy that develops in juvenile or young adult patients. Indeed, in several patients from different countries we found exactly the same mutation. In collaboration with a British laboratory, the mutant protein was produced in the test tube, and found to be much more severely altered in its molecular properties than the mutant proteins from adult patients described previously", says Manfred Kilimann.


These findings have no immediate therapeutic consequences in this severe disease, for which there is no known cure other than a heart transplantation. However, they make diagnosis, prognosis and genetic counseling much more reliable. One important finding of these studies is that the FCNHG mutation always arises newly. Parents of a child with this mutation can therefore be given the reassuring advice that the risk of having another affected child is very low. Moreover, the results have implications far beyond FCNHG. AMP-activated protein kinase is also involved in cardiac infarction and type 2 diabetes, and therefore is an important potential drug target in these widespread diseases. Understanding its molecular structure and functioning, to which these studies have contributed, is expected to aid in drug development.

"Solving the riddle of FCNHG has required much effort and determination. We have worked on it for 12 years, analyzing 11 genes, in collaboration with partners in Germany, Britain and the USA. Having finally cracked the problem is a very rewarding experience for me, being both a scientist and a medical doctor".

Press Office | alfa
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>