Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutated gene causes serious heart disease in newborns

04.05.2005


The research group of professor Manfred Kilimann at the Department of Cell and Molecular Biology has elucidated the genetic cause of a severe heart disease in newborn children. This result will be published in the June issue of the American Journal of Human Genetics this week.



Cardiomyopathies are diseases of the heart muscle tissue and often lead to heart failure. Most of them are inborn and can be caused by gene defects (mutations) affecting various proteins needed either for the contraction or the energy supply of the heart. The subject of professor Kilimann’s research was a rare but particularly malignant form of cardiomyopathy: fatal congenital nonlysosomal heart glycogenosis (FCNHG). Children with this disease have a dramatically enlarged heart (5 times the normal weight) and arrhythmia, and die from heart failure and respiratory complications at a few weeks of age.

"Earlier biochemical research had attributed this disease to a defect in an enzyme of energy metabolism, phosphorylase kinase (Phk), but when we analyzed the Phk genes, we found them to be normal. The earlier molecular explanation of FCNHG was apparently in error. We finally had the idea to look into another gene, of AMP-activated protein kinase (PRKAG2), which is also involved in energy metabolism and was known to cause a related but much milder cardiomyopathy that develops in juvenile or young adult patients. Indeed, in several patients from different countries we found exactly the same mutation. In collaboration with a British laboratory, the mutant protein was produced in the test tube, and found to be much more severely altered in its molecular properties than the mutant proteins from adult patients described previously", says Manfred Kilimann.


These findings have no immediate therapeutic consequences in this severe disease, for which there is no known cure other than a heart transplantation. However, they make diagnosis, prognosis and genetic counseling much more reliable. One important finding of these studies is that the FCNHG mutation always arises newly. Parents of a child with this mutation can therefore be given the reassuring advice that the risk of having another affected child is very low. Moreover, the results have implications far beyond FCNHG. AMP-activated protein kinase is also involved in cardiac infarction and type 2 diabetes, and therefore is an important potential drug target in these widespread diseases. Understanding its molecular structure and functioning, to which these studies have contributed, is expected to aid in drug development.

"Solving the riddle of FCNHG has required much effort and determination. We have worked on it for 12 years, analyzing 11 genes, in collaboration with partners in Germany, Britain and the USA. Having finally cracked the problem is a very rewarding experience for me, being both a scientist and a medical doctor".

Press Office | alfa
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>