Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutated gene causes serious heart disease in newborns

04.05.2005


The research group of professor Manfred Kilimann at the Department of Cell and Molecular Biology has elucidated the genetic cause of a severe heart disease in newborn children. This result will be published in the June issue of the American Journal of Human Genetics this week.



Cardiomyopathies are diseases of the heart muscle tissue and often lead to heart failure. Most of them are inborn and can be caused by gene defects (mutations) affecting various proteins needed either for the contraction or the energy supply of the heart. The subject of professor Kilimann’s research was a rare but particularly malignant form of cardiomyopathy: fatal congenital nonlysosomal heart glycogenosis (FCNHG). Children with this disease have a dramatically enlarged heart (5 times the normal weight) and arrhythmia, and die from heart failure and respiratory complications at a few weeks of age.

"Earlier biochemical research had attributed this disease to a defect in an enzyme of energy metabolism, phosphorylase kinase (Phk), but when we analyzed the Phk genes, we found them to be normal. The earlier molecular explanation of FCNHG was apparently in error. We finally had the idea to look into another gene, of AMP-activated protein kinase (PRKAG2), which is also involved in energy metabolism and was known to cause a related but much milder cardiomyopathy that develops in juvenile or young adult patients. Indeed, in several patients from different countries we found exactly the same mutation. In collaboration with a British laboratory, the mutant protein was produced in the test tube, and found to be much more severely altered in its molecular properties than the mutant proteins from adult patients described previously", says Manfred Kilimann.


These findings have no immediate therapeutic consequences in this severe disease, for which there is no known cure other than a heart transplantation. However, they make diagnosis, prognosis and genetic counseling much more reliable. One important finding of these studies is that the FCNHG mutation always arises newly. Parents of a child with this mutation can therefore be given the reassuring advice that the risk of having another affected child is very low. Moreover, the results have implications far beyond FCNHG. AMP-activated protein kinase is also involved in cardiac infarction and type 2 diabetes, and therefore is an important potential drug target in these widespread diseases. Understanding its molecular structure and functioning, to which these studies have contributed, is expected to aid in drug development.

"Solving the riddle of FCNHG has required much effort and determination. We have worked on it for 12 years, analyzing 11 genes, in collaboration with partners in Germany, Britain and the USA. Having finally cracked the problem is a very rewarding experience for me, being both a scientist and a medical doctor".

Press Office | alfa
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>