Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutated gene causes serious heart disease in newborns

04.05.2005


The research group of professor Manfred Kilimann at the Department of Cell and Molecular Biology has elucidated the genetic cause of a severe heart disease in newborn children. This result will be published in the June issue of the American Journal of Human Genetics this week.



Cardiomyopathies are diseases of the heart muscle tissue and often lead to heart failure. Most of them are inborn and can be caused by gene defects (mutations) affecting various proteins needed either for the contraction or the energy supply of the heart. The subject of professor Kilimann’s research was a rare but particularly malignant form of cardiomyopathy: fatal congenital nonlysosomal heart glycogenosis (FCNHG). Children with this disease have a dramatically enlarged heart (5 times the normal weight) and arrhythmia, and die from heart failure and respiratory complications at a few weeks of age.

"Earlier biochemical research had attributed this disease to a defect in an enzyme of energy metabolism, phosphorylase kinase (Phk), but when we analyzed the Phk genes, we found them to be normal. The earlier molecular explanation of FCNHG was apparently in error. We finally had the idea to look into another gene, of AMP-activated protein kinase (PRKAG2), which is also involved in energy metabolism and was known to cause a related but much milder cardiomyopathy that develops in juvenile or young adult patients. Indeed, in several patients from different countries we found exactly the same mutation. In collaboration with a British laboratory, the mutant protein was produced in the test tube, and found to be much more severely altered in its molecular properties than the mutant proteins from adult patients described previously", says Manfred Kilimann.


These findings have no immediate therapeutic consequences in this severe disease, for which there is no known cure other than a heart transplantation. However, they make diagnosis, prognosis and genetic counseling much more reliable. One important finding of these studies is that the FCNHG mutation always arises newly. Parents of a child with this mutation can therefore be given the reassuring advice that the risk of having another affected child is very low. Moreover, the results have implications far beyond FCNHG. AMP-activated protein kinase is also involved in cardiac infarction and type 2 diabetes, and therefore is an important potential drug target in these widespread diseases. Understanding its molecular structure and functioning, to which these studies have contributed, is expected to aid in drug development.

"Solving the riddle of FCNHG has required much effort and determination. We have worked on it for 12 years, analyzing 11 genes, in collaboration with partners in Germany, Britain and the USA. Having finally cracked the problem is a very rewarding experience for me, being both a scientist and a medical doctor".

Press Office | alfa
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>