Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major advance made on DNA structure

04.05.2005


Oregon State University researchers have made significant new advances in determining the structure of all possible DNA sequences – a discovery that in one sense takes up where Watson and Crick left off, after outlining in 1953 the double-helical structure of this biological blueprint for life.

One of the fundamental problems in biochemistry is to predict the structure of a molecule from its sequence – this has been referred to as the "Holy Grail" of protein chemistry.

Today, the OSU scientists announced in the Proceedings of the National Academy of Sciences that they have used X-ray crystallography to determine the three-dimensional structures of nearly all the possible sequences of a macromolecule, and thereby create a map of DNA structure.



As work of this type expands, it should be fundamentally important in explaining the actual biological function of genes - in particular, such issues as genetic "expression," DNA mutation and repair, and why some DNA structures are inherently prone to damage and mutation. Understanding DNA structure, the scientists say, is just as necessary as knowing gene sequence. The human genome project, with its detailed explanation of the genetic sequence of the entire human genome, is one side of the coin. The other side is understanding how the three-dimensional structure of different types of DNA are defined by those sequences, and, ultimately, how that defines biological function.

"There can be 400 million nucleotides in a human chromosome, but only about 10 percent of them actually code for genes," said Pui Shing Ho, professor and chair of the OSU Department of Biochemistry and Biophysics. "The other 90 percent of the nucleotides may play different roles, such as regulating gene expression, and they often do that through variations in DNA structure."

"Now, for the first time, we’re really starting to see what the genome looks like in three dimensional reality, not just what the sequence of genes is," Ho said. "DNA is much more than just a string of letters, it’s an actual structure that we have to explore if we ever hope to understand biological function. This is a significant step forward, a milestone in DNA structural biology."

In the early 1950s, two researchers at Cambridge University – James Watson and Francis Crick – made pioneering discoveries by proposing the double-helix structure of DNA, along with another research group in England about the same time. They later received the Nobel Prize for this breakthrough, which has been called the most important biological work of the past century and revolutionized the study of biochemistry. Some of the other early and profoundly important work in protein chemistry was done by Linus Pauling, an OSU alumnus and himself the recipient of two Nobel Prizes.

However, Watson and Crick actually identified only one structure of DNA, called B-DNA, when in fact there are many others – one of which was discovered and another whose structure was solved at OSU in recent years – that all have different effects on genetic function.

Aside from the genetic sequence that DNA encodes, the structure of the DNA itself can have profound biological effects, scientists now understand. Until now, there has been no reliable method to identify DNA structure from sequence, and learn more about its effects on biological function.

In their studies, the OSU scientists used X-ray examination of crystalline DNA to reconstruct exactly what the DNA looks like at the atomic level. By determining 63 of the 64 possible DNA sequences, they were able to ultimately determine the physical structure of the underlying DNA for all different types of sequences. Another important part of this study is the finding that the process of DNA crystallization does not distort its structure.

"Essentially, this is a proof of concept, a demonstration that this approach to studying DNA structure will work, and can ultimately be used to help understand biology," Ho said.

For instance, one of the unusual DNA structures called a Holliday junction, whose structure was co-solved at OSU about five years ago, apparently plays a key role in DNA’s ability to repair itself – a vital biological function.

A more fundamental understanding of DNA structure and its relationship to genetic sequences, researchers say, helps set the stage for applied advances in biology, biomedicine, genetic engineering, nanotechnology and other fields.

The recent work was supported by grants from the National Institutes of Health and the National Science Foundation.

Pui Shing Ho | EurekAlert!
Further information:
http://www.onid.orst.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>