Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeled climate and land-use change threatens plant species

01.03.2005


Study of South Africa’s proteas points to growing risks of extinction



Proteas--plants with large, colorful flowers that are important in the floral trade--are under threat from land-use change and climate change. A study based on a multispecies modeling effort for over 300 proteas of the Cape Floristic Region of South Africa suggests that the protected range of proteas is expected to decrease by 36 to 60 percent by 2050 as a result of climate change.

Proteas are a defining element of the renowned fynbos flora of the Cape biodiversity hotspot. The modeling work suggests that the risk of extinction for most protea species is likely to increase. Although as much as twenty percent of the land in the Cape Floristic Region is protected to some degree, land-use change alone can be expected to increase the number of threatened proteas in 2020 by between 4 and 13. When likely climate change is considered too, that number almost triples. Plausible assumptions lead to the conclusion that up to 15 percent of protea species will lose all representation in protected areas by 2050 because of expected climate change, and some will lose their range entirely, making extinction in the wild hard to avoid. The study, by Lee Hannah of Conservation International and three coauthors, is described in the March 2005 issue of BioScience, the monthly journal of the American Institute of Biological Sciences (AIBS).


Warming trends have been observed in the Cape region over the past 30 years, and the fate of protected areas there can offer lessons to inform conservation efforts throughout the world. The study by Hannah and colleagues is notable because it uses fine-scale modeling to assess predicted effects of both land-use change and climate change. Because the species studied are endemic to the Cape, the climate range acceptable to each species can be accurately characterized. Although the ranges of most protea species are expected to decrease as a result of climate change, those of a few species could expand. Hannah and colleagues point out, however, that their study does not attempt to evaluate some effects--such as the increasing prevalence of invasive species--that could compound the threats.

Donna Royston | EurekAlert!
Further information:
http://www.aibs.org

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>